RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Inst. Mat. i Mekh. UrO RAN, 2012, Volume 18, Number 2, Pages 22–37 (Mi timm805)  

This article is cited in 5 scientific papers (total in 5 papers)

On a $\mathcal{PT}$-symmetric waveguide with a pair of small holes

D. I. Borisovab

a Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
b Bashkir State Pedagogical University

Abstract: A planar $\mathcal{PT}$-symmetric waveguide with a pair of small holes is considered. The waveguide is modeled by a planar infinite strip in which a pair of symmetric small holes is cut out. The operator is the Laplacian with $\mathcal{PT}$-symmetric boundary condition at the edges of the strip and Neumann condition at the boundaries of the holes. For this operator, the uniform resolvent convergence is established and the convergence rate is estimated. The effect of the generation by the holes of new eigenvalues from the boundary of the continuous spectrum is studied. Sufficient conditions for the existence and absence of such eigenvalues are obtained and the first terms of their asymptotic expansions are found.

Keywords: $\mathcal{PT}$-symmetric waveguide, small hole, uniform resolvent convergence, asymptotics.

Full text: PDF file (259 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2013, 281, suppl. 1, 5–21

Bibliographic databases:

UDC: 517.984.5+517.955.8
Received: 12.09.2011

Citation: D. I. Borisov, “On a $\mathcal{PT}$-symmetric waveguide with a pair of small holes”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 2, 2012, 22–37; Proc. Steklov Inst. Math. (Suppl.), 281, suppl. 1 (2013), 5–21

Citation in format AMSBIB
\Bibitem{Bor12}
\by D.~I.~Borisov
\paper On a~$\mathcal{PT}$-symmetric waveguide with a~pair of small holes
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 2
\pages 22--37
\mathnet{http://mi.mathnet.ru/timm805}
\elib{http://elibrary.ru/item.asp?id=17736183}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2013
\vol 281
\issue , suppl. 1
\pages 5--21
\crossref{https://doi.org/10.1134/S0081543813050027}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000320460300002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879143282}


Linking options:
  • http://mi.mathnet.ru/eng/timm805
  • http://mi.mathnet.ru/eng/timm/v18/i2/p22

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D.I. Borisov, “Discrete spectrum of thin $\mathcal{PT}$-symmetric waveguide”, Ufa Math. J., 6:1 (2014), 29–55  mathnet  crossref  isi  elib
    2. D.I. Borisov, “The Emergence of Eigenvalues of a $\mathcal{PT}$-Symmetric Operator in a Thin Strip”, Math. Notes, 98:6 (2015), 872–883  mathnet  crossref  crossref  mathscinet  isi  elib
    3. D. B. Davletov, D. V. Kozhevnikov, “The problem of Steklov type in a half-cylinder with a small cavity”, Ufa Math. J., 8:4 (2016), 62–87  mathnet  crossref  isi  elib
    4. D. I. Borisov, M. N. Konyrkulzhaeva, “Simplest graphs with small edges: asymptotics for resolvents and holomorphic dependence of spectrum”, Ufa Math. J., 11:2 (2019), 56–70  mathnet  crossref
    5. Paul B., Dhar H., Chowdhury M., Saha B., “Treating Ostrogradski Instability For Galilean Invariant Chern-Simon'S Model Via Pt Symmetry”, Phys. Rev. D, 99:6 (2019), 065018  crossref  isi
  • Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Number of views:
    This page:228
    Full text:58
    References:39
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019