RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Inst. Mat. i Mekh. UrO RAN, 2012, Volume 18, Number 3, Pages 83–89 (Mi timm841)  

This article is cited in 3 scientific papers (total in 4 papers)

Interior penalty functions and duality in linear programming

I. I. Eremina, L. D. Popovab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Ural Federal University

Abstract: Logarithmic additive terms of barrier type with a penalty parameter are included into the Lagrange function of a linear programming problem. As a result, the problem of searching for saddle points of the modified Lagrangian becomes unconstrained (the saddle point is sought with respect to the whole space of primal and dual variables). Theorems on the asymptotic convergence to the desired solution and analogs of the duality theorems for the arising optimization minimax and maximin problem statements are formulated.

Keywords: linear programming, uality, inner penalty functions.

Full text: PDF file (148 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2013, 283, suppl. 1, 56–63

Bibliographic databases:

UDC: 519.658.4
Received: 25.02.2012

Citation: I. I. Eremin, L. D. Popov, “Interior penalty functions and duality in linear programming”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 3, 2012, 83–89; Proc. Steklov Inst. Math. (Suppl.), 283, suppl. 1 (2013), 56–63

Citation in format AMSBIB
\Bibitem{ErePop12}
\by I.~I.~Eremin, L.~D.~Popov
\paper Interior penalty functions and duality in linear programming
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 3
\pages 83--89
\mathnet{http://mi.mathnet.ru/timm841}
\elib{http://elibrary.ru/item.asp?id=17937012}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2013
\vol 283
\issue , suppl. 1
\pages 56--63
\crossref{https://doi.org/10.1134/S0081543813090058}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000327079000005}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84887605423}


Linking options:
  • http://mi.mathnet.ru/eng/timm841
  • http://mi.mathnet.ru/eng/timm/v18/i3/p83

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. I. Golikov, Yu. G. Evtushenko, “Generalized Newton method for linear optimization problems with inequality constraints”, Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 96–107  mathnet  crossref  mathscinet  isi  elib
    2. L. D. Popov, “Dual approach to the application of barrier functions for the optimal correction of improper linear programming problems of the first kind”, Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 173–179  mathnet  crossref  mathscinet  isi  elib
    3. V. I. Berdyshev, V. V. Vasin, S. V. Matveev, A. A. Makhnev, Yu. N. Subbotin, N. N. Subbotina, V. N. Ushakov, M. Yu. Khachai, A. G. Chentsov, “Ivan Ivanovich Eremin”, Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 1–8  mathnet  crossref  mathscinet  isi  elib
    4. V. I. Erokhin, “O nekotorykh dostatochnykh usloviyakh razreshimosti i nerazreshimosti zadach matrichnoi korrektsii nesobstvennykh zadach lineinogo programmirovaniya”, Tr. IMM UrO RAN, 21, no. 3, 2015, 110–116  mathnet  mathscinet  elib
  • Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Number of views:
    This page:232
    Full text:88
    References:26
    First page:10

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020