RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Inst. Mat. i Mekh. UrO RAN, 2012, Volume 18, Number 3, Pages 99–105 (Mi timm843)  

This article is cited in 9 scientific papers (total in 9 papers)

On finite groups with disconnected prime graph

M. R. Zinov'evaa, V. D. Mazurovb

a Ural Federal University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: All finite simple nonabelian groups that have the same prime graph as a Frobenius group or a $2$-Frobenius group are found.

Keywords: finite simple group, prime graph, Frobenius group, $2$-Frobenius group.

Full text: PDF file (163 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2013, 283, suppl. 1, 139–145

Bibliographic databases:

UDC: 512.542
Received: 20.02.2012

Citation: M. R. Zinov'eva, V. D. Mazurov, “On finite groups with disconnected prime graph”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 3, 2012, 99–105; Proc. Steklov Inst. Math. (Suppl.), 283, suppl. 1 (2013), 139–145

Citation in format AMSBIB
\Bibitem{ZinMaz12}
\by M.~R.~Zinov'eva, V.~D.~Mazurov
\paper On finite groups with disconnected prime graph
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 3
\pages 99--105
\mathnet{http://mi.mathnet.ru/timm843}
\elib{http://elibrary.ru/item.asp?id=17937014}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2013
\vol 283
\issue , suppl. 1
\pages 139--145
\crossref{https://doi.org/10.1134/S0081543813090149}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000327079000014}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84887589524}


Linking options:
  • http://mi.mathnet.ru/eng/timm843
  • http://mi.mathnet.ru/eng/timm/v18/i3/p99

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. L. Gavrilyuk, I. V. Khramtsov, A. S. Kondrat'ev, N. V. Maslova, “On realizability of a graph as the prime graph of a finite group”, Sib. elektron. matem. izv., 11 (2014), 246–257  mathnet
    2. A. S. Kondratev, “O konechnykh gruppakh s nebolshim prostym spektrom, II”, Vladikavk. matem. zhurn., 17:2 (2015), 22–31  mathnet
    3. M. R. Zinov'eva, A. S. Kondrat'ev, “Finite almost simple groups with prime graphs all of whose connected components are cliques”, Proc. Steklov Inst. Math. (Suppl.), 295, suppl. 1 (2016), 178–188  mathnet  crossref  mathscinet  isi  elib
    4. V. D. Mazurov, “$2$-Frobenius groups isospectral to the simple group $U_3(3)$”, Siberian Math. J., 56:6 (2015), 1108–1113  mathnet  crossref  crossref  mathscinet  isi  elib
    5. N. V. Maslova, D. Pagon, “On the realizability of a graph as the Gruenberg–Kegel graph of a finite group”, Sib. elektron. matem. izv., 13 (2016), 89–100  mathnet  crossref
    6. A. S. Kondrat'ev, “Finite groups with given properties of their prime graphs”, Algebra and Logic, 55:1 (2016), 77–82  mathnet  crossref  crossref  isi  elib
    7. A. M. Staroletov, “On recognition of alternating groups by prime graph”, Sib. elektron. matem. izv., 14 (2017), 994–1010  mathnet  crossref
    8. A. Mohammadzadeh, A. R. Moghaddamfar, “Several quantitative characterizations of some specific groups”, Comment. Math. Univ. Carol., 58:1 (2017), 19–34  crossref  mathscinet  zmath  isi  scopus
    9. I. B. Gorshkov, N. V. Maslova, “Finite almost simple groups whose Gruenberg–Kegel graphs coincide with Gruenberg–Kegel graphs of solvable groups”, Algebra and Logic, 57:2 (2018), 115–129  mathnet  crossref  crossref  isi
  • Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Number of views:
    This page:312
    Full text:116
    References:46
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020