RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Inst. Mat. i Mekh. UrO RAN, 2007, Volume 13, Number 2, Pages 13–32 (Mi timm85)  

This article is cited in 10 scientific papers (total in 10 papers)

Certain pairs of irreducible characters of the groups $S_n$

V. A. Belonogov


Abstract: The investigation of the pairs of irreducible characters of the symmetric group $S_n$ that have the same set of roots in one of the sets $A_n$ and $S_n\setminus A_n$ is continued. All such pairs of irreducible characters of the group $S_n$ are found in the case when the least of the main diagonal's lengths of the Young diagrams corresponding to these characters does not exceed 2. Some arguments are obtained for the conjecture that alternating groups $A_n$ have no pairs of semiproportional irreducible characters.

Full text: PDF file (429 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2007, 259, suppl. 2, S12–S34

Document Type: Article
UDC: 512.54
Received: 15.10.2006

Citation: V. A. Belonogov, “Certain pairs of irreducible characters of the groups $S_n$”, Trudy Inst. Mat. i Mekh. UrO RAN, 13, no. 2, 2007, 13–32; Proc. Steklov Inst. Math. (Suppl.), 259, suppl. 2 (2007), S12–S34

Citation in format AMSBIB
\Bibitem{Bel07}
\by V.~A.~Belonogov
\paper Certain pairs of irreducible characters of the groups $S_n$
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2007
\vol 13
\issue 2
\pages 13--32
\mathnet{http://mi.mathnet.ru/timm85}
\elib{http://elibrary.ru/item.asp?id=12040765}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2007
\vol 259
\issue , suppl. 2
\pages S12--S34
\crossref{https://doi.org/10.1134/S0081543807060028}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38949113798}


Linking options:
  • http://mi.mathnet.ru/eng/timm85
  • http://mi.mathnet.ru/eng/timm/v13/i2/p13

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. V. A. Belonogov, “Young diagrams without hooks of length 4 and characters of the group $S_n$”, Proc. Steklov Inst. Math. (Suppl.), 261, suppl. 1 (2008), S24–S35  mathnet  crossref  elib
    2. V. A. Belonogov, “Irreducible characters of the group $S_n$ that are semiproportional on $A_n$”, Algebra and Logic, 47:2 (2008), 77–90  mathnet  crossref  mathscinet  zmath  isi
    3. V. A. Belonogov, “On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. I”, Proc. Steklov Inst. Math. (Suppl.), 263, suppl. 2 (2008), S150–S171  mathnet  crossref  zmath  isi  elib
    4. V. A. Belonogov, “On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. II”, Proc. Steklov Inst. Math. (Suppl.), 264, suppl. 1 (2009), S60–S71  mathnet  crossref  mathscinet  isi  elib
    5. V. A. Belonogov, “O neprivodimykh kharakterakh gruppy $S_n$, poluproportsionalnykh na $A_n$ ili na $S_n\setminus A_n$. III”, Tr. IMM UrO RAN, 14, no. 4, 2008, 12–30  mathnet  elib
    6. V. A. Belonogov, “On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. IV.”, Proc. Steklov Inst. Math. (Suppl.), 267, suppl. 1 (2009), S10–S32  mathnet  crossref  isi  elib
    7. V. A. Belonogov, “O neprivodimykh kharakterakh gruppy $S_n$, poluproportsionalnykh na $A_n$ ili na $S_n\setminus A_n$. V”, Tr. IMM UrO RAN, 16, no. 2, 2010, 13–34  mathnet  elib
    8. V. A. Belonogov, “On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. VI”, Proc. Steklov Inst. Math. (Suppl.), 272, suppl. 1 (2011), S14–S35  mathnet  crossref  isi  elib
    9. Belonogov V.A., “On character tables and abstract structure of finite groups”, Character Theory of Finite Groups, Contemporary Mathematics, 524, 2010, 1–10  crossref  mathscinet  zmath  isi
    10. V. A. Belonogov, “O neprivodimykh kharakterakh gruppy $S_n$, poluproportsionalnykh na $A_n$ ili na $S_n\setminus A_n$. VII”, Tr. IMM UrO RAN, 17, no. 1, 2011, 3–16  mathnet  elib
  • Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Number of views:
    This page:123
    Full text:27
    References:36

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019