RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Inst. Mat. i Mekh. UrO RAN, 2013, Volume 19, Number 3, Pages 71–82 (Mi timm964)  

This article is cited in 4 scientific papers (total in 4 papers)

Finite groups in which every nonsolvable maximal subgroup is a Hall subgroup

V. A. Vedernikov

Moscow City Pedagogical University

Abstract: We describe finite simple nonabelian groups in which every maximal subgroup is a solvable or Hall subgroup. We also describe nonabelian composition factors of a finite nonsolvable group with these properties.

Keywords: finite group, solvable group, nonabelian composition factor, nonsolvable group, maximal subgroup, Hall subgroup, solvable subgroup.

Full text: PDF file (201 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2014, 285, suppl. 1, S191–S202

Bibliographic databases:

UDC: 512.542
Received: 18.02.2013

Citation: V. A. Vedernikov, “Finite groups in which every nonsolvable maximal subgroup is a Hall subgroup”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 3, 2013, 71–82; Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), S191–S202

Citation in format AMSBIB
\Bibitem{Ved13}
\by V.~A.~Vedernikov
\paper Finite groups in which every nonsolvable maximal subgroup is a~Hall subgroup
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2013
\vol 19
\issue 3
\pages 71--82
\mathnet{http://mi.mathnet.ru/timm964}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3362579}
\elib{http://elibrary.ru/item.asp?id=20234973}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2014
\vol 285
\issue , suppl. 1
\pages S191--S202
\crossref{https://doi.org/10.1134/S0081543814050216}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000338337200020}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84903310146}


Linking options:
  • http://mi.mathnet.ru/eng/timm964
  • http://mi.mathnet.ru/eng/timm/v19/i3/p71

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. N. Demina, N. V. Maslova, “Nonabelian composition factors of a finite group with arithmetic constraints to nonsolvable maximal subgroups”, Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 64–76  mathnet  crossref  mathscinet  isi  elib
    2. N. V. Maslova, “Finite groups with arithmetic restrictions on maximal subgroups”, Algebra and Logic, 54:1 (2015), 65–69  mathnet  crossref  crossref  mathscinet  isi
    3. A. N. Skiba, “On some results in the theory of finite partially soluble groups”, Commun. Math. Stat., 4:3 (2016), 281–309  crossref  mathscinet  zmath  isi  scopus
    4. I. Sokhor, “On groups with biprimary subgroups of even order”, Algebra Discrete Math., 23:2 (2017), 312–330  mathnet  mathscinet  zmath  isi
  • Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Number of views:
    This page:156
    Full text:45
    References:28
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019