RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Inst. Mat. i Mekh. UrO RAN, 2013, Volume 19, Number 3, Pages 199–206 (Mi timm977)  

This article is cited in 4 scientific papers (total in 4 papers)

Generation of a finite group with Hall maximal subgroups by a pair of conjugate elements

N. V. Maslovaab, D. O. Revincd

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Ural Federal University named B. N. Yeltsin
c Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
d Novosibirsk State University

Abstract: For a finite group $G$, the set of all prime divisors of $|G|$ is denoted by $\pi(G)$. P. Shumyatskii introduced the following conjecture, which is included in the “Kourovka Notebook” as Question 17.125: a finite group $G$ always contains a pair of conjugate elements $a$ and $b$ such that $\pi(G)=\pi(\langle a,b\rangle)$. Denote by $\mathfrak Y$ the class of all finite groups $G$ such that $\pi(H)\ne\pi(G)$ for every maximal subgroup $H$ in $G$. Shumyatskii's conjecture is equivalent to the following conjecture: every group from $\mathfrak Y$ is generated by two conjugate elements. Let $\mathfrak V$ be the class of all finite groups in which every maximal subgroup is a Hall subgroup. It is clear that $\mathfrak V\subseteq\mathfrak Y$. We prove that every group from $\mathfrak V$ is generated by two conjugate elements. Thus, Shumyatskii's conjecture is partially supported. In addition, we study some properties of a smallest order counterexample to Shumyatskii's conjecture.

Keywords: finite group, generation by a pair of conjugate elements, Hall subgroup, maximal subgroup, prime spectrum.

Full text: PDF file (166 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2014, 285, suppl. 1, S139–S145

Bibliographic databases:

Document Type: Article
UDC: 512.542
Received: 12.09.2012

Citation: N. V. Maslova, D. O. Revin, “Generation of a finite group with Hall maximal subgroups by a pair of conjugate elements”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 3, 2013, 199–206; Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), S139–S145

Citation in format AMSBIB
\Bibitem{MasRev13}
\by N.~V.~Maslova, D.~O.~Revin
\paper Generation of a~finite group with Hall maximal subgroups by a~pair of conjugate elements
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2013
\vol 19
\issue 3
\pages 199--206
\mathnet{http://mi.mathnet.ru/timm977}
\elib{http://elibrary.ru/item.asp?id=20234986}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2014
\vol 285
\issue , suppl. 1
\pages S139--S145
\crossref{https://doi.org/10.1134/S0081543814050150}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000338337200014}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84903291456}


Linking options:
  • http://mi.mathnet.ru/eng/timm977
  • http://mi.mathnet.ru/eng/timm/v19/i3/p199

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. V. Maslova, D. O. Revin, “On nonabelian composition factors of a finite group that is prime spectrum minimal”, Proc. Steklov Inst. Math. (Suppl.), 287, suppl. 1 (2014), 116–127  mathnet  crossref  mathscinet  isi  elib
    2. N. V. Maslova, “Finite simple groups that are not spectrum critical”, Proc. Steklov Inst. Math. (Suppl.), 292, suppl. 1 (2016), 211–215  mathnet  crossref  mathscinet  isi  elib
    3. N. V. Maslova, “Finite groups with arithmetic restrictions on maximal subgroups”, Algebra and Logic, 54:1 (2015), 65–69  mathnet  crossref  crossref  mathscinet  isi
    4. N. V. Maslova, “On the finite prime spectrum minimal groups”, Proc. Steklov Inst. Math. (Suppl.), 295, suppl. 1 (2016), 109–119  mathnet  crossref  mathscinet  elib
  • Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Number of views:
    This page:241
    Full text:40
    References:40
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019