Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Mat. Inst. Steklova, 2006, Volume 254, Pages 196–214 (Mi tm109)  

This article is cited in 3 scientific papers (total in 3 papers)

Persistence Theorems and Simultaneous Uniformization

Yu. S. Ilyashenko

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Among the most intriguing problems in the theory of foliations by analytic curves is that of the persistence of complex limit cycles of a polynomial vector field, as well as related problems concerning the persistence of identity cycles and saddle connections and the global extendability of the Poincaré map. It is proved that all these persistence problems have positive solutions for any foliation admitting a simultaneous uniformization of leaves. The latter means that there exists a uniformization of leaves that analytically depends on the initial condition and satisfies certain additional assumptions, called continuity and boundedness. Thus, the results obtained are conditional, but they establish a relation between very different properties of foliations.

Full text: PDF file (257 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2006, 254, 184–200

Bibliographic databases:

UDC: 517.927.7
Received in June 2005

Citation: Yu. S. Ilyashenko, “Persistence Theorems and Simultaneous Uniformization”, Nonlinear analytic differential equations, Collected papers, Trudy Mat. Inst. Steklova, 254, Nauka, MAIK Nauka/Inteperiodika, M., 2006, 196–214; Proc. Steklov Inst. Math., 254 (2006), 184–200

Citation in format AMSBIB
\Bibitem{Ily06}
\by Yu.~S.~Ilyashenko
\paper Persistence Theorems and Simultaneous Uniformization
\inbook Nonlinear analytic differential equations
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2006
\vol 254
\pages 196--214
\publ Nauka, MAIK Nauka/Inteperiodika
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm109}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2301006}
\elib{https://elibrary.ru/item.asp?id=13517734}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2006
\vol 254
\pages 184--200
\crossref{https://doi.org/10.1134/S0081543806030096}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33749419146}


Linking options:
  • http://mi.mathnet.ru/eng/tm109
  • http://mi.mathnet.ru/eng/tm/v254/p196

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Gavrilov L., Movasati H., Nakai I., “On the non-persistence of Hamiltonian identity cycles”, J. Differential Equations, 246:7 (2009), 2706–2723  crossref  mathscinet  zmath  isi  scopus
    2. Alvarez S., Hussenot N., “Singularities for analytic continuations of holonomy germs of Riccati foliations”, Ann. Inst. Fourier, 66:1 (2016), 331–376  crossref  mathscinet  zmath  isi  elib  scopus
    3. A. A. Scherbakov, “Uniformizatsiya sloenii s giperbolicheskimi listami i uravnenie Beltrami s parametrami”, Funkts. analiz i ego pril., 53:3 (2019), 98–100  mathnet  crossref  mathscinet  elib
  •    . . .  Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:262
    Full text:90
    References:33

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021