Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Mat. Inst. Steklova, 2005, Volume 248, Pages 124–129 (Mi tm125)  

This article is cited in 3 scientific papers (total in 3 papers)

Effective Formulas for Constants in the Stechkin–Gabushin Problem

G. A. Kalyabin

Image Processing Systems Institute

Abstract: Explicit and transparent expressions are found for the numbers $S_{n,k}$ involved in the formula $E(N,n,k)= S_{n,k} N^{-\beta /\alpha }$, where $\alpha :=(2k+1)/2n$, $\beta := 1-\alpha $, and $k\in \{0,1,…,n-1\}$, for the best approximation of the operators $d^k/dx^k$ in the $C(\mathbb R_+)$ metric on the class of functions $f$ such that $\|f\|_{L_2(\mathbb R_+)} <\infty$ and $\|f^{(n)}\|_{L_2(\mathbb R_+)}\le 1$ by means of linear operators $V$ whose norms satisfy the inequality $\|V\|_{L_2(\mathbb R_+)\to C(\mathbb R_+)}\le N$. Simultaneously, the values of the sharp constants $K_{n,k}$ in the Kolmogorov inequality $\|f^{(k)}\|_{C(\mathbb R_+)}\le K_{n,k}\|f^{(n)}\|^{\alpha }_{L_2(\mathbb R_+)} \|f\|^{\beta }_{L_2 (\mathbb R_+)}$ are determined. The symmetry and regularity properties of the constants, as well as their asymptotic behavior as $n\to \infty$, are studied.

Full text: PDF file (185 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2005, 248, 118–124

Bibliographic databases:
UDC: 517.51
Received in October 2004

Citation: G. A. Kalyabin, “Effective Formulas for Constants in the Stechkin–Gabushin Problem”, Studies on function theory and differential equations, Collected papers. Dedicated to the 100th birthday of academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 248, Nauka, MAIK Nauka/Inteperiodika, M., 2005, 124–129; Proc. Steklov Inst. Math., 248 (2005), 118–124

Citation in format AMSBIB
\Bibitem{Kal05}
\by G.~A.~Kalyabin
\paper Effective Formulas for Constants in the Stechkin--Gabushin Problem
\inbook Studies on function theory and differential equations
\bookinfo Collected papers. Dedicated to the 100th birthday of academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2005
\vol 248
\pages 124--129
\publ Nauka, MAIK Nauka/Inteperiodika
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm125}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2165922}
\zmath{https://zbmath.org/?q=an:1122.41016}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2005
\vol 248
\pages 118--124


Linking options:
  • http://mi.mathnet.ru/eng/tm125
  • http://mi.mathnet.ru/eng/tm/v248/p124

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. G. A. Kalyabin, “Some Problems for Sobolev Spaces on the Half-line”, Proc. Steklov Inst. Math., 255 (2006), 150–158  mathnet  crossref  mathscinet  elib
    2. Watanabe, K, “The best constant of Sobolev inequality on a bounded interval”, Journal of Mathematical Analysis and Applications, 340:1 (2008), 699  crossref  mathscinet  zmath  adsnasa  isi  scopus
    3. S. K. Bagdasarov, “Kolmogorov inequalities for functions in classes $W^rH^\omega$ with bounded $\mathbb L_p$-norm”, Izv. Math., 74:2 (2010), 219–279  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  •    . . .  Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:336
    Full text:128
    References:49

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021