RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2005, Volume 248, Pages 204–222 (Mi tm132)  

This article is cited in 1 scientific paper (total in 1 paper)

The Series $\sum\sum\frac{e^{2\pi imnx}}{mn}$ and a Problem of Chowla

K. I. Oskolkov

University of South Carolina

Abstract: The double trigonometric series $U(x):=\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{e^{2\pi imnx}}{\pi mn}$ and $U(\chi,x):=\sum_{m=1}^\infty\sum_{n=1}^\infty\chi_{m,n}\frac{e^{2\pi imnx}}{\pi mn}$ with the hyperbolic phase and coordinate-wise slow multipliers $\chi_{m,n}$ are studied. Complete descriptions of the $\mathcal K$-convergence (summability) sets of the sine series $\Im U(x)$ and the cosine series $\Re U(x)$ are given. The $\mathcal K$-sum of a double series is defined as the common value of the limits of partial sums over expanding families of kites in $\mathbb N^2$. The latter include convex domains in the usual sense, such as rectangles, as well as nonconvex domains, for example, hyperbolic crosses $\{(m,n):1\le mn\le N\}$.

Full text: PDF file (294 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2005, 248, 197–215

Bibliographic databases:
UDC: 517.518.47
Received in September 2004

Citation: K. I. Oskolkov, “The Series $\sum\sum\frac{e^{2\pi imnx}}{mn}$ and a Problem of Chowla”, Studies on function theory and differential equations, Collected papers. Dedicated to the 100th birthday of academician Sergei Mikhailovich Nikol'skii, Tr. Mat. Inst. Steklova, 248, Nauka, MAIK Nauka/Inteperiodika, M., 2005, 204–222; Proc. Steklov Inst. Math., 248 (2005), 197–215

Citation in format AMSBIB
\Bibitem{Osk05}
\by K.~I.~Oskolkov
\paper The Series $\sum\sum\frac{e^{2\pi imnx}}{mn}$ and a~Problem of Chowla
\inbook Studies on function theory and differential equations
\bookinfo Collected papers. Dedicated to the 100th birthday of academician Sergei Mikhailovich Nikol'skii
\serial Tr. Mat. Inst. Steklova
\yr 2005
\vol 248
\pages 204--222
\publ Nauka, MAIK Nauka/Inteperiodika
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm132}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2165929}
\zmath{https://zbmath.org/?q=an:1126.40001}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2005
\vol 248
\pages 197--215


Linking options:
  • http://mi.mathnet.ru/eng/tm132
  • http://mi.mathnet.ru/eng/tm/v248/p204

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Balazard M., Martin B., “On Some Approximate Functional Equations Related to the Gauss Transformation”, Aequ. Math., 93:3 (2019), 563–585  crossref  isi
  •    . . .  Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:291
    Full text:107
    References:39

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020