Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Mat. Inst. Steklova, 2005, Volume 248, Pages 237–249 (Mi tm134)  

This article is cited in 2 scientific papers (total in 2 papers)

An Extremal Property of Chebyshev Polynomials

V. D. Stepanov

Institute for Applied Mathematics, Khabarovsk Division, Far-Eastern Branch of the Russian Academy of Sciences

Abstract: For any integer $k\ge 1$, in the metric of weighted classes $L^2(\omega )$, sharp two-sided inequalities of the form $\gamma _k|\int G^{(k)}(x) \nu _k(x) dx|^2\le [\mathrm {dist}_{L^2(\omega )}(G,\mathcal P_{k-1})]^2\le \gamma _k\int |G^{(k)}(x)|^2\nu _k(x) dx$ are obtained for the distance between an element $G$ and the subspace $\mathcal P_{k-1}$ of all polynomials of degree ${\le } k-1$; these inequalities reduce to equalities for Chebyshev-type polynomials of degree $k$. On the real axis with $\omega (x)=\nu _k(x)=\frac {1}{\sqrt {2\pi }} e^{-x^2/2}$ and $\gamma _k=1/k!$, a precise extension of the Chernoff inequality ($k=1$) is obtained for all $k\ge 1$.

Full text: PDF file (206 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2005, 248, 230–242

Bibliographic databases:
UDC: 517.51
Received in September 2004

Citation: V. D. Stepanov, “An Extremal Property of Chebyshev Polynomials”, Studies on function theory and differential equations, Collected papers. Dedicated to the 100th birthday of academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 248, Nauka, MAIK Nauka/Inteperiodika, M., 2005, 237–249; Proc. Steklov Inst. Math., 248 (2005), 230–242

Citation in format AMSBIB
\Bibitem{Ste05}
\by V.~D.~Stepanov
\paper An Extremal Property of Chebyshev Polynomials
\inbook Studies on function theory and differential equations
\bookinfo Collected papers. Dedicated to the 100th birthday of academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2005
\vol 248
\pages 237--249
\publ Nauka, MAIK Nauka/Inteperiodika
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm134}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2165931}
\zmath{https://zbmath.org/?q=an:1125.41306}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2005
\vol 248
\pages 230--242


Linking options:
  • http://mi.mathnet.ru/eng/tm134
  • http://mi.mathnet.ru/eng/tm/v248/p237

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Stepanov V.D., “An extremal property of Jacobi polynomials in two-sided Chernoff-type inequalities for higher order derivatives”, Proc. Amer. Math. Soc., 136:5 (2008), 1589–1597  crossref  mathscinet  zmath  isi  elib  scopus
    2. Smarzewski R., Rutka P., “Inequalities of Chernoff type for finite and infinite sequences of classical orthogonal polynomials”, Proc. Amer. Math. Soc., 138:4 (2010), 1305–1315  crossref  mathscinet  zmath  isi  elib  scopus
  •    . . .  Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:313
    Full text:107
    References:44

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021