|
Tr. Mat. Inst. Steklova, 2004, Volume 246, Pages 20–42
(Mi tm144)
|
|
|
|
This article is cited in 25 scientific papers (total in 25 papers)
McKay Equivalence for Symplectic Resolutions of Quotient Singularities
R. V. Bezrukavnikova, D. B. Kaledinb a Northwestern University
b Steklov Mathematical Institute, Russian Academy of Sciences
Abstract:
An arbitrary crepant resolution $X$ of the quotient $V/G$ of a symplectic vector space $V$ by the action of a finite subgroup $G\subset\mathrm{Sp}(V)$ is considered. It is proved that the derived category of coherent sheaves on $X$ is equivalent to the derived category of $G$-equivariant coherent sheaves on $V$.
Full text:
PDF file (337 kB)
References:
PDF file
HTML file
English version:
Proceedings of the Steklov Institute of Mathematics, 2004, 246, 13–33
Bibliographic databases:
UDC:
512.7 Received in February 2004
Citation:
R. V. Bezrukavnikov, D. B. Kaledin, “McKay Equivalence for Symplectic Resolutions of Quotient Singularities”, Algebraic geometry: Methods, relations, and applications, Collected papers. Dedicated to the memory of Andrei Nikolaevich Tyurin, corresponding member of the Russian Academy of Sciences, Tr. Mat. Inst. Steklova, 246, Nauka, MAIK «Nauka/Inteperiodika», M., 2004, 20–42; Proc. Steklov Inst. Math., 246 (2004), 13–33
Citation in format AMSBIB
\Bibitem{BezKal04}
\by R.~V.~Bezrukavnikov, D.~B.~Kaledin
\paper McKay Equivalence for Symplectic Resolutions of Quotient Singularities
\inbook Algebraic geometry: Methods, relations, and applications
\bookinfo Collected papers. Dedicated to the memory of Andrei Nikolaevich Tyurin, corresponding member of the Russian Academy of Sciences
\serial Tr. Mat. Inst. Steklova
\yr 2004
\vol 246
\pages 20--42
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm144}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2101282}
\zmath{https://zbmath.org/?q=an:1137.14301}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2004
\vol 246
\pages 13--33
Linking options:
http://mi.mathnet.ru/eng/tm144 http://mi.mathnet.ru/eng/tm/v246/p20
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Craw A., Maclagan D., Thomas R.R., “Moduli of McKay quiver representations I: The coherent component”, Proceedings of the London Mathematical Society, 95:1 (2007), 179–198
-
Gordon I.G., “Quiver Varieties, Category O for Rational Cherednik Algebras, and Hecke Algebras”, International Mathematics Research Papers, 2008, rpn006
-
Bezrukavnikov R., Mirkovic I., Rumynin D., “Localization of modules for a semisimple Lie algebra in prime characteristic”, Annals of Mathematics, 167:3 (2008), 945–991
-
Stafford J.T., Van den Bergh M., “Noncommutative resolutions and rational singularities”, Michigan Mathematical Journal, 57 (2008), 659–674
-
Kuznetsov A., “Lefschetz decompositions and categorical resolutions of singularities”, Selecta Mathematica–New Series, 13:4 (2008), 661–696
-
Kaledin D., “Derived equivalences by quantization”, Geometric and Functional Analysis, 17:6 (2008), 1968–2004
-
Iyama O., Yoshino Yu., “Mutation in triangulated categories and rigid Cohen–Macaulay modules”, Inventiones Mathematicae, 172:1 (2008), 117–168
-
Logvinenko T., “Derived McKay correspondence via pure–sheaf transforms”, Mathematische Annalen, 341:1 (2008), 137–167
-
Bezrukavnikov R., Kaledin D., “Fedosov quantization in positive characteristic”, Journal of the American Mathematical Society, 21:2 (2008), 409–438
-
Kaledin D., “Geometry and topology of symplectic resolutions”, Proceedings of Symposia in Pure Mathematics: Algebraic Geometry Seattle 2005, Proceedings of Symposia in Pure Mathematics, 80, no. 1- 2, 2009, 595–628
-
Shepler A.V., Witherspoon S., “Finite groups acting linearly: Hochschild cohomology and the cup product”, Adv Math, 226:4 (2011), 2884–2910
-
Losev I., “Isomorphisms of Quantizations via Quantization of Resolutions”, Adv. Math., 231:3-4 (2012), 1216–1270
-
Shklyarov D., “Hirzebruch-Riemann-Roch-Type Formula for Dg Algebras”, Proc. London Math. Soc., 106:Part 1 (2013), 1–32
-
Losev I., “on Procesi Bundles”, Math. Ann., 359:3-4 (2014), 729–744
-
Rina Anno, Roman Bezrukavnikov, Ivan Mirković, “Stability conditions for Slodowy slices and real variations of stability”, Mosc. Math. J., 15:2 (2015), 187–203
-
Bellamy G., Schedler T., “On the (non)existence of symplectic resolutions of linear quotients”, Math. Res. Lett., 23:6 (2016), 1537–1564
-
Chan K., Pomerleano D., Ueda K., “Lagrangian Torus Fibrations and Homological Mirror Symmetry for the Conifold”, Commun. Math. Phys., 341:1 (2016), 135–178
-
Spenko S., Van den Bergh M., “Non-Commutative Resolutions of Quotient Singularities For Reductive Groups”, Invent. Math., 210:1 (2017), 3–67
-
Bellamy G., Dodd Ch., Mcgerty K., Nevins T., “Categorical Cell Decomposition of Quantized Symplectic Algebraic Varieties”, Geom. Topol., 21:5 (2017), 2601–2681
-
Bernstein J., Bezrukavnikov R., Kazhdan D., “Deligne-Lusztig Duality and Wonderful Compactification”, Sel. Math.-New Ser., 24:1, SI (2018), 7–20
-
Ganev I., “Quantizations of Multiplicative Hypertoric Varieties At a Root of Unity”, J. Algebra, 506 (2018), 92–128
-
Kawamata Yu., “Derived Mckay Correspondence For Gl(3, C)”, Adv. Math., 328 (2018), 1199–1216
-
Tabuada G., Van den Bergh M., “Additive Invariants of Orbifolds”, Geom. Topol., 22:5 (2018), 3003–3048
-
Karmazyn J., “Deformations of Algebras Defined By Tilting Bundles”, J. Algebra, 513 (2018), 388–434
-
Donovan W., Wemyss M., “Noncommutative Enhancements of Contractions”, Adv. Math., 344 (2019), 99–136
|
Number of views: |
This page: | 567 | Full text: | 206 | References: | 33 |
|