RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2004, Volume 246, Pages 321–327 (Mi tm164)  

On the Group $GL(2,K[t])$

I. R. Shafarevich

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: The group mentioned in the title of the paper is one of the simplest examples of infinite-dimensional algebraic groups. In this paper, an increasing sequence of finite-dimensional schemes is constructed that exhausts this group. It is proved that these schemes are reduced and irreducible and are complete intersections. The set of singular points of these schemes is obtained.

Full text: PDF file (171 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2004, 246, 308–314

Bibliographic databases:
UDC: 512.7
Received in December 2003

Citation: I. R. Shafarevich, “On the Group $GL(2,K[t])$”, Algebraic geometry: Methods, relations, and applications, Collected papers. Dedicated to the memory of Andrei Nikolaevich Tyurin, corresponding member of the Russian Academy of Sciences, Tr. Mat. Inst. Steklova, 246, Nauka, MAIK Nauka/Inteperiodika, M., 2004, 321–327; Proc. Steklov Inst. Math., 246 (2004), 308–314

Citation in format AMSBIB
\Bibitem{Sha04}
\by I.~R.~Shafarevich
\paper On the Group $GL(2,K[t])$
\inbook Algebraic geometry: Methods, relations, and applications
\bookinfo Collected papers. Dedicated to the memory of Andrei Nikolaevich Tyurin, corresponding member of the Russian Academy of Sciences
\serial Tr. Mat. Inst. Steklova
\yr 2004
\vol 246
\pages 321--327
\publ Nauka, MAIK Nauka/Inteperiodika
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm164}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2101302}
\zmath{https://zbmath.org/?q=an:1112.14052}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2004
\vol 246
\pages 308--314


Linking options:
  • http://mi.mathnet.ru/eng/tm164
  • http://mi.mathnet.ru/eng/tm/v246/p321

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  •    . . .  Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:738
    Full text:387
    References:69

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019