RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2004, Volume 247, Pages 186–201 (Mi tm17)  

This article is cited in 6 scientific papers (total in 6 papers)

Discrete Connections and Difference Linear Equations

S. P. Novikov

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: Following earlier works, we develop here a nonstandard discrete analogue of the theory of differential-geometric $GL_{n}$-connections on triangulated manifolds. This theory is based on the interpretation of a connection as a first-order linear difference equation—the “triangle equation”—for scalar functions of vertices in simplicial complexes. This theory appeared as a byproduct of the discretization of famous completely integrable systems such as the 2D Toda lattice. A nonstandard discretization of complex analysis based on these ideas was developed earlier. Here, a complete classification theory based on the mixture of abelian and nonabelian features is given for connections on triangulated manifolds.

Full text: PDF file (236 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2004, 247, 168–183

Bibliographic databases:
UDC: 515.332+515.165.7
Received in March 2004

Citation: S. P. Novikov, “Discrete Connections and Difference Linear Equations”, Geometric topology and set theory, Collected papers. Dedicated to the 100th birthday of professor Lyudmila Vsevolodovna Keldysh, Tr. Mat. Inst. Steklova, 247, Nauka, MAIK Nauka/Inteperiodika, M., 2004, 186–201; Proc. Steklov Inst. Math., 247 (2004), 168–183

Citation in format AMSBIB
\Bibitem{Nov04}
\by S.~P.~Novikov
\paper Discrete Connections and Difference Linear Equations
\inbook Geometric topology and set theory
\bookinfo Collected papers. Dedicated to the 100th birthday of professor Lyudmila Vsevolodovna Keldysh
\serial Tr. Mat. Inst. Steklova
\yr 2004
\vol 247
\pages 186--201
\publ Nauka, MAIK Nauka/Inteperiodika
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm17}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2168170}
\zmath{https://zbmath.org/?q=an:1109.39020}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2004
\vol 247
\pages 168--183


Linking options:
  • http://mi.mathnet.ru/eng/tm17
  • http://mi.mathnet.ru/eng/tm/v247/p186

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Vankerschaver J., “Euler–Poincaré reduction for discrete field theories”, Journal of Mathematical Physics, 48:3 (2007), 032902  crossref  mathscinet  zmath  adsnasa  isi  scopus
    2. Zivaljevic R.T., “Combinatorial Groupoids, Cubical Complexes, and the Lovasz Conjecture”, Discrete & Computational Geometry, 41:1 (2009), 135–161  crossref  mathscinet  zmath  isi  scopus
    3. Proc. Steklov Inst. Math., 273 (2011), 238–251  mathnet  crossref  mathscinet  zmath  isi  elib
    4. P. G. Grinevich, S. P. Novikov, “Discrete $SL_n$-connections and self-adjoint difference operators on two-dimensional manifolds”, Russian Math. Surveys, 68:5 (2013), 861–887  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    5. Basso E., Arai M., Dabaghian Yu., “Gamma Synchronization Influences Map Formation Time in a Topological Model of Spatial Learning”, PLoS Comput. Biol., 12:9 (2016), e1005114  crossref  isi  scopus
    6. Dabaghian Y., “Maintaining Consistency of Spatial Information in the Hippocampal Network: A Combinatorial Geometry Model”, Neural Comput., 28:6 (2016), 1051–1071  crossref  isi  scopus
  •    . . .  Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:853
    Full text:165
    References:59

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019