RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2009, Volume 266, Pages 127–139 (Mi tm1873)  

This article is cited in 6 scientific papers (total in 6 papers)

Gal's Conjecture for Nestohedra Corresponding to Complete Bipartite Graphs

N. Yu. Erokhovets

Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia

Abstract: Convex polytopes have interested mathematicians since very ancient times. At present, they occupy a central place in convex geometry, combinatorics, and toric topology and demonstrate the harmony and beauty of mathematics. This paper considers the problem of describing the $f$-vectors of simple flag polytopes, that is, simple polytopes in which any set of pairwise intersecting facets has nonempty intersection. We show that for each nestohedron corresponding to a connected building set, the $h$-polynomial is a descent-generating function for some class of permutations; we also prove Gal's conjecture on the nonnegativity of $\gamma$-vectors of flag polytopes for nestohedra constructed over complete bipartite graphs.

Full text: PDF file (243 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2009, 266, 120–132

Bibliographic databases:

UDC: 514.172.45+515.164.8
Received in February 2009

Citation: N. Yu. Erokhovets, “Gal's Conjecture for Nestohedra Corresponding to Complete Bipartite Graphs”, Geometry, topology, and mathematical physics. II, Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 70th birthday, Tr. Mat. Inst. Steklova, 266, MAIK Nauka/Interperiodica, Moscow, 2009, 127–139; Proc. Steklov Inst. Math., 266 (2009), 120–132

Citation in format AMSBIB
\Bibitem{Ero09}
\by N.~Yu.~Erokhovets
\paper Gal's Conjecture for Nestohedra Corresponding to Complete Bipartite Graphs
\inbook Geometry, topology, and mathematical physics.~II
\bookinfo Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 70th birthday
\serial Tr. Mat. Inst. Steklova
\yr 2009
\vol 266
\pages 127--139
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm1873}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2603264}
\zmath{https://zbmath.org/?q=an:1227.52006}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2009
\vol 266
\pages 120--132
\crossref{https://doi.org/10.1134/S0081543809030079}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000270722100007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350371240}


Linking options:
  • http://mi.mathnet.ru/eng/tm1873
  • http://mi.mathnet.ru/eng/tm/v266/p127

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. D. Volodin, “Cubical realizations of flag nestohedra and proof of Gal's conjecture for them”, Russian Math. Surveys, 65:1 (2010), 188–190  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. V. M. Buchstaber, V. D. Volodin, “Sharp upper and lower bounds for nestohedra”, Izv. Math., 75:6 (2011), 1107–1133  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    3. Aisbett N., “Inequalities Between Gamma-Polynomials of Graph-Associahedra”, Electron. J. Comb., 19:2 (2012), P36  mathscinet  zmath  isi  elib
    4. Aisbett N., “Frankl-Furedi-Kalai Inequalities on the Gamma-Vectors of Flag Nestohedra”, Discret. Comput. Geom., 51:2 (2014), 323–336  crossref  mathscinet  zmath  isi  elib  scopus
    5. N. Yu. Erokhovets, “Buchstaber invariant theory of simplicial complexes and convex polytopes”, Proc. Steklov Inst. Math., 286 (2014), 128–187  mathnet  crossref  crossref  isi
    6. V. M. Buchstaber, N. Yu. Erokhovets, “Truncations of simple polytopes and applications”, Proc. Steklov Inst. Math., 289 (2015), 104–133  mathnet  crossref  crossref  isi  elib
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:210
    Full text:3
    References:30

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019