RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2009, Volume 266, Pages 237–262 (Mi tm1874)  

This article is cited in 8 scientific papers (total in 8 papers)

Riemann Surfaces with Orbifold Points

L. O. Chekhovabc

a Alikhanov Institute for Theoretical and Experimental Physics, Moscow, Russia
b Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
c Laboratoire J.-V. Poncelet, Moscow, Russia

Abstract: We interpret the previously developed Teichmüller theory of surfaces with marked points on boundary components (bordered surfaces) as the Teichmüller theory of Riemann surfaces with orbifold points of order 2. In the Poincaré uniformization pattern, we describe necessary and sufficient conditions for the group generated by the Fuchsian group of the surface with added inversions to be of the almost hyperbolic Fuchsian type. All the techniques elaborated for the bordered surfaces (quantization, classical and quantum mapping-class group transformations, and Poisson and quantum algebra of geodesic functions) are equally applicable to the surfaces with orbifold points.

Full text: PDF file (371 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2009, 266, 228–250

Bibliographic databases:

Document Type: Article
UDC: 515.165.7+517.545
Received in February 2009

Citation: L. O. Chekhov, “Riemann Surfaces with Orbifold Points”, Geometry, topology, and mathematical physics. II, Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 70th birthday, Tr. Mat. Inst. Steklova, 266, MAIK Nauka/Interperiodica, Moscow, 2009, 237–262; Proc. Steklov Inst. Math., 266 (2009), 228–250

Citation in format AMSBIB
\Bibitem{Che09}
\by L.~O.~Chekhov
\paper Riemann Surfaces with Orbifold Points
\inbook Geometry, topology, and mathematical physics.~II
\bookinfo Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 70th birthday
\serial Tr. Mat. Inst. Steklova
\yr 2009
\vol 266
\pages 237--262
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm1874}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2603271}
\zmath{https://zbmath.org/?q=an:1183.30047}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2009
\vol 266
\pages 228--250
\crossref{https://doi.org/10.1134/S0081543809030146}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000270722100014}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350417096}


Linking options:
  • http://mi.mathnet.ru/eng/tm1874
  • http://mi.mathnet.ru/eng/tm/v266/p237

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. Mazzocco, L. O. Chekhov, “Orbifold Riemann surfaces: Teichmüller spaces and algebras of geodesic functions”, Russian Math. Surveys, 64:6 (2009), 1079–1130  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. Chekhov L.O., “Orbifold Riemann surfaces and geodesic algebras”, J. Phys. A, 42:30 (2009), 304007, 32 pp.  crossref  mathscinet  zmath  isi  elib  scopus
    3. Chekhov L., Mazzocco M., “Shear coordinate description of the quantized versal unfolding of a $D_4$ singularity”, J. Phys. A, 43:44 (2010), 442002, 13 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    4. Chekhov L., Mazzocco M., “Isomonodromic deformations and twisted Yangians arising in Teichmüller theory”, Adv. Math., 226:6 (2011), 4731–4775  crossref  mathscinet  zmath  isi  elib  scopus
    5. Chekhov L. Mazzocco M., “Teichmüller Spaces as Degenerated Symplectic Leaves in Dubrovin-Ugaglia Poisson Manifolds”, Physica D, 241:23-24 (2012), 2109–2121  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    6. Chekhov L. Shapiro M., “Teichmüller Spaces of Riemann Surfaces with Orbifold Points of Arbitrary Order and Cluster Variables”, Int. Math. Res. Notices, 2014, no. 10, 2746–2772  crossref  mathscinet  zmath  isi  elib  scopus
    7. Chekhov L. Mazzocco M., “Colliding Holes in Riemann Surfaces and Quantum Cluster Algebras”, Nonlinearity, 31:1 (2018), 54–107  crossref  mathscinet  zmath  isi  scopus
    8. Labardini-Fragoso D., Velasco D., “On a Family of Caldero-Chapoton Algebras That Have the Laurent Phenomenon”, J. Algebra, 520 (2019), 90–135  crossref  mathscinet  zmath  isi  scopus
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:231
    Full text:7
    References:23

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019