RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2001, Volume 232, Pages 268–285 (Mi tm218)  

This article is cited in 1 scientific paper (total in 1 paper)

Approximation of a Class of Singular Integrals by Algebraic Polynomials with Regard to the Location of a Point on an Interval

V. P. Motornyi

Dnepropetrovsk State University

Abstract: A pointwise approximation of singular integrals $S(f)(x)=\frac 1\pi \int _{-1}^1\frac {f(t)}{t-x}\frac 1{\sqrt {1-t^2}} dt$, $x\in (-1,1)$, of functions from the class $W^rH^{\omega }$ by algebraic polynomials is analyzed ($\omega(t)$ is a convex upward modulus of continuity such that $t\omega '(t)$ is a nondecreasing function). The estimates obtained cannot be improved simultaneously for all moduli of continuity.

Full text: PDF file (241 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2001, 232, 260–277

Bibliographic databases:
UDC: 517.5
Received in September 2000

Citation: V. P. Motornyi, “Approximation of a Class of Singular Integrals by Algebraic Polynomials with Regard to the Location of a Point on an Interval”, Function spaces, harmonic analysis, and differential equations, Collected papers. Dedicated to the 95th anniversary of academician Sergei Mikhailovich Nikol'skii, Tr. Mat. Inst. Steklova, 232, Nauka, MAIK Nauka/Inteperiodika, M., 2001, 268–285; Proc. Steklov Inst. Math., 232 (2001), 260–277

Citation in format AMSBIB
\Bibitem{Mot01}
\by V.~P.~Motornyi
\paper Approximation of a~Class of Singular Integrals by Algebraic Polynomials with Regard to the Location of a~Point on an Interval
\inbook Function spaces, harmonic analysis, and differential equations
\bookinfo Collected papers. Dedicated to the 95th anniversary of academician Sergei Mikhailovich Nikol'skii
\serial Tr. Mat. Inst. Steklova
\yr 2001
\vol 232
\pages 268--285
\publ Nauka, MAIK Nauka/Inteperiodika
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm218}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1851454}
\zmath{https://zbmath.org/?q=an:1005.41002}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2001
\vol 232
\pages 260--277


Linking options:
  • http://mi.mathnet.ru/eng/tm218
  • http://mi.mathnet.ru/eng/tm/v232/p268

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. T. S. Mardvilko, A. A. Pekarskii, “Conjugate Functions on the Closed Interval and Their Relationship with Uniform Rational and Piecewise Polynomial Approximations”, Math. Notes, 99:2 (2016), 272–283  mathnet  crossref  crossref  mathscinet  isi  elib
  •    . . .  Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:204
    Full text:71
    References:51

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020