RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2001, Volume 233, Pages 5–70 (Mi tm224)  

This article is cited in 4 scientific papers (total in 4 papers)

Extremal Problems for Differential Inclusions with State Constraints

S. M. Aseevab

a Steklov Mathematical Institute, Russian Academy of Sciences
b International Institute for Applied Systems Analysis

Abstract: This paper is devoted to the study of optimal control problems for differential inclusions with state constraints. The main focus is placed on the derivation of the most complete first-order necessary optimality conditions that employ the specific features of both a differential constraint given by a differential inclusion and state constraints. For the problem considered, a generalization of the Pontryagin maximum principle is obtained that strengthens many known results in this field and contains an additional condition that the Hamiltonian (the maximum function) of the problem should be stationary. For the Lagrange multipliers entering the relations of the maximum principle, the properties primarily attributed to the state constraints are studied. In particular, the degeneracy of the necessary optimality conditions is analyzed and sufficient conditions are obtained for the regularity of the Lagrange multipliers.

Full text: PDF file (635 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2001, 233, 1–63

Bibliographic databases:
UDC: 517.977
Received in December 2000

Citation: S. M. Aseev, “Extremal Problems for Differential Inclusions with State Constraints”, Differential equations. Certain mathematical problems of optimal control, Collected papers, Tr. Mat. Inst. Steklova, 233, Nauka, MAIK Nauka/Inteperiodika, M., 2001, 5–70; Proc. Steklov Inst. Math., 233 (2001), 1–63

Citation in format AMSBIB
\Bibitem{Ase01}
\by S.~M.~Aseev
\paper Extremal Problems for Differential Inclusions with State Constraints
\inbook Differential equations. Certain mathematical problems of optimal control
\bookinfo Collected papers
\serial Tr. Mat. Inst. Steklova
\yr 2001
\vol 233
\pages 5--70
\publ Nauka, MAIK Nauka/Inteperiodika
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm224}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1866977}
\zmath{https://zbmath.org/?q=an:1013.49020}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2001
\vol 233
\pages 1--63


Linking options:
  • http://mi.mathnet.ru/eng/tm224
  • http://mi.mathnet.ru/eng/tm/v233/p5

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Aseev S.M., Smirnov A.I., “The pontryagin maximum principle for the problem of optimally crossing a given domain”, Doklady Mathematics, 69:2 (2004), 243–245  mathscinet  zmath  isi
    2. Prostyakov P.V., “Construction of the reachability set of the Lotka–Volterra system”, Differential Equations, 42:3 (2006), 391–399  mathnet  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    3. S. M. Aseev, A. V. Kryazhimskii, “The Pontryagin Maximum Principle and Optimal Economic Growth Problems”, Proc. Steklov Inst. Math., 257 (2007), 1–255  mathnet  crossref  mathscinet  zmath  elib
    4. A. I. Smirnov, “Necessary Optimality Conditions for a Class of Optimal Control Problems with Discontinuous Integrand”, Proc. Steklov Inst. Math., 262 (2008), 213–230  mathnet  crossref  mathscinet  zmath  isi  elib  elib
  •    . . .  Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:438
    Full text:139
    References:62

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020