RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2001, Volume 235, Pages 7–35 (Mi tm231)  

This article is cited in 1 scientific paper (total in 1 paper)

A Quasiperiodic System of Polynomial Models of CR-Manifolds

V. K. Beloshapka

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Polynomial models for the germs of real submanifolds of a complex space are constructed. For the germs whose Levi–Tanaka algebra has length 2, such a sufficiently well-studied model is given by a tangent quadric. It is shown that models of the third and fourth degrees (algebras of lengths 3 and 4) possess, in their codimension ranges, a full spectrum of properties that are completely analogous to the properties of tangent quadrics. For the constructed higher order models, a full spectrum of properties is obtained with the only exception that they are not fully universal.

Full text: PDF file (321 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2001, 235, 1–28

Bibliographic databases:

UDC: 514.763.47
Received in February 2001

Citation: V. K. Beloshapka, “A Quasiperiodic System of Polynomial Models of CR-Manifolds”, Analytic and geometric issues of complex analysis, Collected papers. Dedicated to the 70th anniversary of academician Anatolii Georgievich Vitushkin, Tr. Mat. Inst. Steklova, 235, Nauka, MAIK Nauka/Inteperiodika, M., 2001, 7–35; Proc. Steklov Inst. Math., 235 (2001), 1–28

Citation in format AMSBIB
\Bibitem{Bel01}
\by V.~K.~Beloshapka
\paper A~Quasiperiodic System of Polynomial Models of CR-Manifolds
\inbook Analytic and geometric issues of complex analysis
\bookinfo Collected papers. Dedicated to the 70th anniversary of academician Anatolii Georgievich Vitushkin
\serial Tr. Mat. Inst. Steklova
\yr 2001
\vol 235
\pages 7--35
\publ Nauka, MAIK Nauka/Inteperiodika
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm231}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1886570}
\zmath{https://zbmath.org/?q=an:1013.32022}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2001
\vol 235
\pages 1--28


Linking options:
  • http://mi.mathnet.ru/eng/tm231
  • http://mi.mathnet.ru/eng/tm/v235/p7

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. K. Beloshapka, “Universal Models For Real Submanifolds”, Math. Notes, 75:4 (2004), 475–488  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
  •    . . .  Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:193
    Full text:39
    References:22

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019