RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2006, Volume 255, Pages 88–98 (Mi tm255)  

This article is cited in 11 scientific papers (total in 11 papers)

Indefinite Sturm–Liouville Problem for Some Classes of Self-similar Singular Weights

A. A. Vladimirov, I. A. Sheipak

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We continue studying the asymptotics of the spectrum for the boundary value problem $-y"-\lambda \rho y=0$, $y(0)=y(1)=0$, where $\rho $ is a function in the space $\mathring W_{2}^{-1}[0,1]$ with a self-similar primitive. The cases of nonarithmetic and degenerate arithmetic self-similarity of such a primitive are considered.

Full text: PDF file (194 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2006, 255, 82–91

Bibliographic databases:

UDC: 517.984
Received in November 2005

Citation: A. A. Vladimirov, I. A. Sheipak, “Indefinite Sturm–Liouville Problem for Some Classes of Self-similar Singular Weights”, Function spaces, approximation theory, and nonlinear analysis, Collected papers, Tr. Mat. Inst. Steklova, 255, Nauka, MAIK Nauka/Inteperiodika, M., 2006, 88–98; Proc. Steklov Inst. Math., 255 (2006), 82–91

Citation in format AMSBIB
\Bibitem{VlaShe06}
\by A.~A.~Vladimirov, I.~A.~Sheipak
\paper Indefinite Sturm--Liouville Problem for Some Classes of Self-similar Singular Weights
\inbook Function spaces, approximation theory, and nonlinear analysis
\bookinfo Collected papers
\serial Tr. Mat. Inst. Steklova
\yr 2006
\vol 255
\pages 88--98
\publ Nauka, MAIK Nauka/Inteperiodika
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm255}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2301611}
\elib{http://elibrary.ru/item.asp?id=13507351}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2006
\vol 255
\pages 82--91
\crossref{https://doi.org/10.1134/S0081543806040079}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846859541}


Linking options:
  • http://mi.mathnet.ru/eng/tm255
  • http://mi.mathnet.ru/eng/tm/v255/p88

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Vladimirov, “Calculating the eigenvalues of the Sturm–Liouville problem with a fractal indefinite weight”, Comput. Math. Math. Phys., 47:8 (2007), 1295–1300  mathnet  crossref  mathscinet  elib  elib
    2. I. A. Sheipak, “Singular points of a self-similar function of spectral order zero: self-similar Stieltjes string”, Math. Notes, 88:2 (2010), 275–286  mathnet  crossref  crossref  mathscinet  isi
    3. A. A. Vladimirov, I. A. Sheipak, “Asymptotics of the Eigenvalues of the Sturm–Liouville Problem with Discrete Self-Similar Weight”, Math. Notes, 88:5 (2010), 637–646  mathnet  crossref  crossref  mathscinet  isi
    4. Sheipak I.A., “O spektre operatora yakobi s eksponentsialno rastuschimi matrichnymi elementami”, Vestnik Moskovskogo universiteta. Seriya 1: Matematika. Mekhanika, 2011, no. 6, 15–21  mathscinet  zmath  elib
    5. N. V. Gaganov, I. A. Sheipak, “A boundedness criterion for the variations of self-similar functions”, Siberian Math. J., 53:1 (2012), 55–71  mathnet  crossref  mathscinet  isi
    6. Nazarov A.I., Sheipak I.A., “Degenerate self-similar measures, spectral asymptotics and small deviations of Gaussian processes”, Bull. Lond. Math. Soc., 44:1 (2012), 12–24  crossref  mathscinet  zmath  isi  elib  scopus
    7. A. A. Vladimirov, I. A. Sheipak, “On the Neumann Problem for the Sturm–Liouville Equation with Cantor-Type Self-Similar Weight”, Funct. Anal. Appl., 47:4 (2013), 261–270  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    8. I. A. Sheipak, “Asymptotics of the Spectrum of a Differential Operator with the Weight Generated by the Minkowski Function”, Math. Notes, 97:2 (2015), 289–294  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    9. A. A. Vladimirov, “Nekotorye zamechaniya ob integralnykh kharakteristikakh vinerovskogo protsessa”, Dalnevost. matem. zhurn., 15:2 (2015), 156–165  mathnet  elib
    10. J. V. Tikhonov, I. A. Sheipak, “On the string equation with a singular weight belonging to the space of multipliers in Sobolev spaces with negative index of smoothness”, Izv. Math., 80:6 (2016), 1242–1256  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    11. A. S. Ivanov, A. M. Savchuk, “Trace of Order $(-1)$ for a String with Singular Weight”, Math. Notes, 102:2 (2017), 164–180  mathnet  crossref  crossref  mathscinet  isi  elib  elib
  •    . . .  Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:726
    Full text:67
    References:26

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019