Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Mat. Inst. Steklova, 2010, Volume 269, Pages 225–241 (Mi tm2898)  

This article is cited in 3 scientific papers (total in 3 papers)

Asymptotic formulas for solutions of nonlocal elliptic problems

A. L. Skubachevskii

Peoples' Friendship University of Russia, Moscow, Russia

Abstract: We consider nonlocal elliptic problems in plane domains and obtain asymptotic formulas for solutions in weighted spaces near junction points.

Full text: PDF file (280 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2010, 269, 218–234

Bibliographic databases:

UDC: 517.9
Received in November 2009

Citation: A. L. Skubachevskii, “Asymptotic formulas for solutions of nonlocal elliptic problems”, Function theory and differential equations, Collected papers. Dedicated to Academician Sergei Mikhailovich Nikol'skii on the occasion of his 105th birthday, Trudy Mat. Inst. Steklova, 269, MAIK Nauka/Interperiodica, Moscow, 2010, 225–241; Proc. Steklov Inst. Math., 269 (2010), 218–234

Citation in format AMSBIB
\Bibitem{Sku10}
\by A.~L.~Skubachevskii
\paper Asymptotic formulas for solutions of nonlocal elliptic problems
\inbook Function theory and differential equations
\bookinfo Collected papers. Dedicated to Academician Sergei Mikhailovich Nikol'skii on the occasion of his 105th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2010
\vol 269
\pages 225--241
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm2898}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2729987}
\zmath{https://zbmath.org/?q=an:1202.35082}
\elib{https://elibrary.ru/item.asp?id=15109765}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2010
\vol 269
\pages 218--234
\crossref{https://doi.org/10.1134/S0081543810020197}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000281705900019}
\elib{https://elibrary.ru/item.asp?id=15329506}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77956633656}


Linking options:
  • http://mi.mathnet.ru/eng/tm2898
  • http://mi.mathnet.ru/eng/tm/v269/p225

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. P. L. Gurevich, “Elliptic problems with nonlocal boundary conditions and Feller semigroups”, Journal of Mathematical Sciences, 182:3 (2012), 255–440  mathnet  crossref  mathscinet  zmath
    2. Ashyralyev A., “On the well-posedness of the nonlocal boundary value problem for elliptic-parabolic equations”, Electron. J. Qual. Theory Differ. Equ., 2011, no. 49, 16 pp.  crossref  mathscinet  isi  elib
    3. Kolesnikova I.A., “Struktura nekotorogo kvazilineinogo differentsialno-raznostnogo operatora, dopuskayuschego variatsionnyi printsip”, Vestnik rossiiskogo universiteta druzhby narodov. seriya: matematika, informatika, fizika, 2013, no. 2, 5–21  elib
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:243
    Full text:44
    References:65

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021