|
Tr. Mat. Inst. Steklova, 2010, Volume 269, Pages 254–264
(Mi tm2902)
|
|
|
|
Greedy approximation of characteristic functions
V. N. Temlyakov University of South Carolina, Columbia, SC, USA
Abstract:
We discuss the problem of sparse representation of domains in $\mathbb R^d$. We demonstrate how the recently developed general theory of greedy approximation in Banach spaces can be used in this problem. The use of greedy approximation has two important advantages: (1) it works for an arbitrary dictionary of sets used for sparse representation and (2) the method of approximation does not depend on smoothness properties of the domains and automatically provides a near optimal rate of approximation for domains with different smoothness properties. We also give some lower estimates of the approximation error and discuss a specific greedy algorithm for approximation of convex domains in $\mathbb R^2$.
Full text:
PDF file (201 kB)
References:
PDF file
HTML file
English version:
Proceedings of the Steklov Institute of Mathematics, 2010, 269, 247–258
Bibliographic databases:
UDC:
517.518.8 Received in November 2009
Language:
Citation:
V. N. Temlyakov, “Greedy approximation of characteristic functions”, Function theory and differential equations, Collected papers. Dedicated to Academician Sergei Mikhailovich Nikol'skii on the occasion of his 105th birthday, Tr. Mat. Inst. Steklova, 269, MAIK Nauka/Interperiodica, Moscow, 2010, 254–264; Proc. Steklov Inst. Math., 269 (2010), 247–258
Citation in format AMSBIB
\Bibitem{Tem10}
\by V.~N.~Temlyakov
\paper Greedy approximation of characteristic functions
\inbook Function theory and differential equations
\bookinfo Collected papers. Dedicated to Academician Sergei Mikhailovich Nikol'skii on the occasion of his 105th birthday
\serial Tr. Mat. Inst. Steklova
\yr 2010
\vol 269
\pages 254--264
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm2902}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2729989}
\zmath{https://zbmath.org/?q=an:1207.41014}
\elib{https://elibrary.ru/item.asp?id=15109767}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2010
\vol 269
\pages 247--258
\crossref{https://doi.org/10.1134/S0081543810020215}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000281705900021}
\elib{https://elibrary.ru/item.asp?id=27147520}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77956632532}
Linking options:
http://mi.mathnet.ru/eng/tm2902 http://mi.mathnet.ru/eng/tm/v269/p254
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 304 | Full text: | 31 | References: | 50 |
|