RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Правила для авторов
Лицензионный договор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Труды МИАН:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Тр. МИАН, 2010, том 269, страницы 8–30 (Mi tm2904)  

Эта публикация цитируется в 8 научных статьях (всего в 8 статьях)

Приближение всплесками и поперечники Фурье классов периодических функций многих переменных. I

Д. Б. Базарханов

Институт математики, Алматы, Казахстан

Аннотация: Получены характеризации (с соответствующими эквивалентными нормировками) функциональных пространств типа Никольского–Бесова $\mathbf B^{sm}_{pq}(\mathbb I^k)$ и Лизоркина–Трибеля $\mathbf L^{sm}_{pq}(\mathbb I^k)$ в терминах представлений функций из этих пространств рядами Фурье относительно кратной системы $\mathcal W^\mathbb I_m$ всплесков Мейера и в терминах последовательностей коэффициентов Фурье по этой системе. Установлены точные в смысле порядка оценки приближения функций из классов $B^{sm}_{pq}(\mathbb I^k)$ и $L^{sm}_{pq}(\mathbb I^k)$ специальными частичными суммами этих рядов в метрике $L_r(\mathbb I^k)$ для ряда соотношений между параметрами $s,p,q,r,m$ ($s=(s_1,…,s_n)\in\mathbb R^n_+$, $1\leq p,q,r\leq\infty$, $m=(m_1,…,m_n)\in\mathbb N^n$, $k=m_1+…+m_n$, $\mathbb I=\mathbb R$ или $\mathbb T$). В периодическом случае изучены поперечники Фурье этих классов функций.

Полный текст: PDF файл (341 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Proceedings of the Steklov Institute of Mathematics, 2010, 269, 2–24

Реферативные базы данных:

Тип публикации: Статья
УДК: 517.518.224+517.518.837
Поступило в январе 2010 г.

Образец цитирования: Д. Б. Базарханов, “Приближение всплесками и поперечники Фурье классов периодических функций многих переменных. I”, Теория функций и дифференциальные уравнения, Сборник статей. К 105-летию со дня рождения академика Сергея Михайловича Никольского, Тр. МИАН, 269, МАИК «Наука/Интерпериодика», М., 2010, 8–30; Proc. Steklov Inst. Math., 269 (2010), 2–24

Цитирование в формате AMSBIB
\RBibitem{Baz10}
\by Д.~Б.~Базарханов
\paper Приближение всплесками и поперечники Фурье классов периодических функций многих переменных.~I
\inbook Теория функций и дифференциальные уравнения
\bookinfo Сборник статей. К 105-летию со дня рождения академика Сергея Михайловича Никольского
\serial Тр. МИАН
\yr 2010
\vol 269
\pages 8--30
\publ МАИК «Наука/Интерпериодика»
\publaddr М.
\mathnet{http://mi.mathnet.ru/tm2904}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2729970}
\zmath{https://zbmath.org/?q=an:1219.42025}
\elib{http://elibrary.ru/item.asp?id=15109748}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2010
\vol 269
\pages 2--24
\crossref{https://doi.org/10.1134/S0081543810020021}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000281705900002}
\elib{http://elibrary.ru/item.asp?id=15367530}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77956636115}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/tm2904
  • http://mi.mathnet.ru/rus/tm/v269/p8

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. D. B. Bazarkhanov, “Estimates for the widths of classes of periodic functions of several variables – I”, Eurasian Math. J., 1:3 (2010), 11–26  mathnet  mathscinet  zmath
    2. Hansen M. Sickel W., “Best M-Term Approximation and Sobolev-Besov Spaces of Dominating Mixed Smoothness-the Case of Compact Embeddings”, Constr. Approx., 36:1 (2012), 1–51  crossref  mathscinet  zmath  isi  elib  scopus
    3. Bazarkhanov D.B., “Wavelet Approximation and Fourier Widths of Classes of Periodic Functions of Several Variables. II”, Anal. Math., 38:4 (2012), 249–289  crossref  mathscinet  zmath  isi
    4. Д. Б. Базарханов, “Нелинейные приближения классов периодических функций многих переменных”, Функциональные пространства и смежные вопросы анализа, Сборник статей. К 80-летию со дня рождения члена-корреспондента РАН Олега Владимировича Бесова, Тр. МИАН, 284, МАИК «Наука/Интерпериодика», М., 2014, 8–37  mathnet  crossref; D. B. Bazarkhanov, “Nonlinear approximations of classes of periodic functions of many variables”, Proc. Steklov Inst. Math., 284 (2014), 2–31  crossref  isi
    5. Ш. А. Балгимбаева, Т. И. Смирнов, “Оценки поперечников Фурье классов периодических функций со смешанным модулем гладкости”, Тр. ИММ УрО РАН, 21, № 4, 2015, 78–94  mathnet  mathscinet  elib
    6. Д. Б. Базарханов, “Нелинейные тригонометрические приближения классов функций многих переменных”, Функциональные пространства, теория приближений, смежные разделы математического анализа, Сборник статей. К 110-летию со дня рождения академика Сергея Михайловича Никольского, Тр. МИАН, 293, МАИК «Наука/Интерпериодика», М., 2016, 8–42  mathnet  crossref  mathscinet  elib; D. B. Bazarkhanov, “Nonlinear trigonometric approximations of multivariate function classes”, Proc. Steklov Inst. Math., 293 (2016), 2–36  crossref  isi
    7. Balgimbayeva Sh.A., “Hyperbolic Cross Approximation With Respect to Wavelet System With Compact Supports”, International Conference Functional Analysis in Interdisciplinary Applications (FAIA2017), AIP Conference Proceedings, 1880, eds. Kalmenov T., Sadybekov M., Amer Inst Physics, 2017, UNSP 030005  crossref  mathscinet  isi  scopus
    8. Д. Б. Базарханов, “Линейное восстановление псевдодифференциальных операторов на классах гладких функций на m-мерном торе. I”, Тр. ИММ УрО РАН, 24, № 4, 2018, 57–79  mathnet  crossref  elib
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Просмотров:
    Эта страница:328
    Полный текст:9
    Литература:87

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019