RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2011, Volume 273, Pages 192–206 (Mi tm3284)  

This article is cited in 7 scientific papers (total in 7 papers)

Filling minimality of Finslerian 2-discs

S. V. Ivanov

St. Petersburg Department of the Steklov Mathematical Institute, Russian Academy of Sciences, St. Petersburg, Russia

Abstract: We prove that every Riemannian metric on the 2-disc such that all its geodesics are minimal is a minimal filling of its boundary (within the class of fillings homeomorphic to the disc). This improves an earlier result of the author by removing the assumption that the boundary is convex. More generally, we prove this result for Finsler metrics with area defined as the two-dimensional Holmes–Thompson volume. This implies a generalization of Pu's isosystolic inequality to Finsler metrics, both for the Holmes–Thompson and Busemann definitions of the Finsler area.

Full text: PDF file (227 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2011, 273, 176–190

Bibliographic databases:

UDC: 514.76
Received in November 2009
Language:

Citation: S. V. Ivanov, “Filling minimality of Finslerian 2-discs”, Modern problems of mathematics, Collected papers. In honor of the 75th anniversary of the Institute, Tr. Mat. Inst. Steklova, 273, MAIK Nauka/Interperiodica, Moscow, 2011, 192–206; Proc. Steklov Inst. Math., 273 (2011), 176–190

Citation in format AMSBIB
\Bibitem{Iva11}
\by S.~V.~Ivanov
\paper Filling minimality of Finslerian 2-discs
\inbook Modern problems of mathematics
\bookinfo Collected papers. In honor of the 75th anniversary of the Institute
\serial Tr. Mat. Inst. Steklova
\yr 2011
\vol 273
\pages 192--206
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3284}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2893545}
\zmath{https://zbmath.org/?q=an:1241.53062}
\elib{http://elibrary.ru/item.asp?id=16456345}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2011
\vol 273
\pages 176--190
\crossref{https://doi.org/10.1134/S0081543811040079}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000295982500007}


Linking options:
  • http://mi.mathnet.ru/eng/tm3284
  • http://mi.mathnet.ru/eng/tm/v273/p192

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Ivanov S., “Local Monotonicity of Riemannian and Finsler Volume with Respect to Boundary Distances”, Geod. Dedic., 164:1 (2013), 83–96  crossref  mathscinet  zmath  isi
    2. Koehler H., “On Filling Minimality of Simple Finsler Manifolds”, Rev. Mat. Iberoam., 30:1 (2014), 331–348  crossref  mathscinet  zmath  isi  elib
    3. Paiva J.C.A., Balacheff F., Tzanev K., “Isosystolic inequalities for optical hypersurfaces”, Adv. Math., 301 (2016), 934–972  crossref  mathscinet  zmath  isi  scopus
    4. Sabourau S., Yassine Z., “Optimal systolic inequalities on Finsler Möbius bands”, J. Topol. Anal., 8:2 (2016), 349–372  crossref  mathscinet  zmath  isi  elib  scopus
    5. Lytchak A., Wenger S., “Intrinsic Structure of Minimal Discs in Metric Spaces”, Geom. Topol., 22:1 (2018), 591–644  crossref  mathscinet  zmath  isi
    6. Lytchak A. Wenger S., “Isoperimetric Characterization of Upper Curvature Bounds”, Acta Math., 221:1 (2018), 159–202  crossref  isi
    7. Gorbachev D.V., Ivanov V.I., Tikhonov S.Yu., “Positive l-P-Bounded Dunkl-Type Generalized Translation Operator and Its Applications”, Constr. Approx., 49:3 (2019), 555–605  crossref  isi
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:170
    Full text:15
    References:38

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019