RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2011, Volume 274, Pages 15–31 (Mi tm3325)  

This article is cited in 10 scientific papers (total in 10 papers)

On normal subgroups in the periodic products of S. I. Adian

V. S. Atabekyan

Faculty of Mathematics and Mechanics, Yerevan State University, Yerevan, Armenia

Abstract: A subgroup $H$ of a given group $G$ is called a hereditarily factorizable subgroup (HF subgroup) if each congruence on $H$ can be extended to some congruence on the entire group $G$. An arbitrary group $G_1$ is an HF subgroup of the direct product $G_1\times G_2$, as well as of the free product $G_1*G_2$ of groups $G_1$ and $G_2$. In this paper a necessary and sufficient condition is obtained for a factor $G_i$ of Adian's $n$-periodic product $\prod_{i\in I}^nG_i$ of an arbitrary family of groups $\{G_i\}_{i\in I}$ to be an HF subgroup. We also prove that for each odd $n\geq1003$ any noncyclic subgroup of the free Burnside group $B(m,n)$ contains an HF subgroup isomorphic to the group $B(\infty,n)$ of infinite rank. This strengthens the recent results of A. Yu. Ol'shanskii and M. Sapir, D. Sonkin, and S. Ivanov on HF subgroups of free Burnside groups. This result implies, in particular, that each (noncyclic) subgroup of the group $B(m,n)$ is $SQ$-universal in the class of all groups of period $n$. Moreover, it turns out that any countable group of period $n$ is embedded in some $2$-generated group of period $n$, which strengthens the previously obtained result of V. Obraztsov. At the end of the paper we prove that the group $B(m,n)$ is distinguished as a direct factor in any $n$-periodic group in which it is contained as a normal subgroup.

Full text: PDF file (274 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2011, 274, 9–24

Bibliographic databases:

Document Type: Article
UDC: 512.54
Received in August 2010

Citation: V. S. Atabekyan, “On normal subgroups in the periodic products of S. I. Adian”, Algorithmic aspects of algebra and logic, Collected papers. Dedicated to Academician Sergei Ivanovich Adian on the occasion of his 80th birthday, Tr. Mat. Inst. Steklova, 274, MAIK Nauka/Interperiodica, Moscow, 2011, 15–31; Proc. Steklov Inst. Math., 274 (2011), 9–24

Citation in format AMSBIB
\Bibitem{Ata11}
\by V.~S.~Atabekyan
\paper On normal subgroups in the periodic products of S.\,I.~Adian
\inbook Algorithmic aspects of algebra and logic
\bookinfo Collected papers. Dedicated to Academician Sergei Ivanovich Adian on the occasion of his 80th birthday
\serial Tr. Mat. Inst. Steklova
\yr 2011
\vol 274
\pages 15--31
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3325}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2962933}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2011
\vol 274
\pages 9--24
\crossref{https://doi.org/10.1134/S0081543811060034}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000295983200002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84892530654}


Linking options:
  • http://mi.mathnet.ru/eng/tm3325
  • http://mi.mathnet.ru/eng/tm/v274/p15

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. L. Gevorgyan, “On automorphisms of periodic products of groups”, Uch. zapiski EGU, ser. Fizika i Matematika, 2012, no. 2, 3–9  mathnet
    2. V. S. Atabekyan, “Splitting automorphisms of free Burnside groups”, Sb. Math., 204:2 (2013), 182–189  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. Atabekyan V.S., “The Groups of Automorphisms Are Complete for Free Burnside Groups of Odd Exponents N >= 1003”, Int. J. Algebr. Comput., 23:6 (2013), 1485–1496  crossref  mathscinet  zmath  isi  elib
    4. Zusmanovich P., “On the Utility of Robinson-Amitsur Ultrafilters”, J. Algebra, 388 (2013), 268–286  crossref  mathscinet  zmath  isi  elib
    5. V. S. Atabekyan, “The automorphism tower problem for free periodic groups”, Uch. zapiski EGU, ser. Fizika i Matematika, 2013, no. 2, 3–7  mathnet
    6. S. I. Adian, V. S. Atabekyan, “The Hopfian Property of $n$-Periodic Products of Groups”, Math. Notes, 95:4 (2014), 443–449  mathnet  crossref  crossref  mathscinet  isi  elib
    7. V. S. Atabekyan, “Automorphism groups and endomorphism semigroups of groups $B(m,n)$”, Algebra and Logic, 54:1 (2015), 58–62  mathnet  crossref  crossref  mathscinet  isi
    8. S. I. Adian, Varuzhan Atabekyan, “Characteristic properties and uniform non-amenability of $n$-periodic products of groups”, Izv. Math., 79:6 (2015), 1097–1110  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    9. Atabekyan V.S. Gevorgyan A.L. Stepanyan Sh.A., “The Unique Trace Property of N-Periodic Product of Groups”, J. Contemp. Math. Anal.-Armen. Aca., 52:4 (2017), 161–165  crossref  mathscinet  zmath  isi
    10. Adian S.I., Atabekyan V.S., “Periodic Products of Groups”, J. Contemp. Math. Anal.-Armen. Aca., 52:3 (2017), 111–117  crossref  mathscinet  zmath  isi
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:327
    Full text:4
    References:62

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019