RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 General information Latest issue Forthcoming papers Archive Impact factor Guidelines for authors License agreement Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Trudy MIAN: Year: Volume: Issue: Page: Find

 Tr. Mat. Inst. Steklova, 2011, Volume 274, Pages 252–268 (Mi tm3327)

Degree-uniform lower bound on the weights of polynomials with given sign function

Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia

Abstract: A Boolean function $f\colon\{0,1\}^n\to\{0,1\}$ is called the sign function of an integer polynomial $p$ of degree $d$ in $n$ variables if it is true that $f(x)=1$ if and only if $p(x)>0$. In this case the polynomial $p$ is called a threshold gate of degree $d$ for the function $f$. The weight of the threshold gate is the sum of the absolute values of the coefficients of $p$. For any $n$ and $d\le D\le\frac{\varepsilon n^{1/5}}{\log n}$ we construct a function $f$ such that there is a threshold gate of degree $d$ for $f$, but any threshold gate for $f$ of degree at most $D$ has weight $2^{(\delta n)^d/D^{4d}}$, where $\varepsilon>0$ and $\delta>0$ are some constants. In particular, if $D$ is constant, then any threshold gate of degree $D$ for our function has weight $2^{\Omega(n^d)}$. Previously, functions with these properties have been known only for $d=1$ (and arbitrary $D$) and for $D=d$. For constant $d$ our functions are computable by polynomial size DNFs. The best previous lower bound on the weights of threshold gates for such functions was $2^{\Omega(n)}$. Our results can also be translated to the case of functions $f\colon\{-1,1\}^n\to\{-1,1\}$.

Full text: PDF file (271 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2011, 274, 231–246

Bibliographic databases:

UDC: 510.52
Received in October 2010

Citation: Vladimir V. Podolskii, “Degree-uniform lower bound on the weights of polynomials with given sign function”, Algorithmic aspects of algebra and logic, Collected papers. Dedicated to Academician Sergei Ivanovich Adian on the occasion of his 80th birthday, Tr. Mat. Inst. Steklova, 274, MAIK Nauka/Interperiodica, Moscow, 2011, 252–268; Proc. Steklov Inst. Math., 274 (2011), 231–246

Citation in format AMSBIB
\Bibitem{Pod11} \by Vladimir~V.~Podolskii \paper Degree-uniform lower bound on the weights of polynomials with given sign function \inbook Algorithmic aspects of algebra and logic \bookinfo Collected papers. Dedicated to Academician Sergei Ivanovich Adian on the occasion of his 80th birthday \serial Tr. Mat. Inst. Steklova \yr 2011 \vol 274 \pages 252--268 \publ MAIK Nauka/Interperiodica \publaddr Moscow \mathnet{http://mi.mathnet.ru/tm3327} \mathscinet{http://www.ams.org/mathscinet-getitem?mr=2962944} \elib{http://elibrary.ru/item.asp?id=16766486} \transl \jour Proc. Steklov Inst. Math. \yr 2011 \vol 274 \pages 231--246 \crossref{https://doi.org/10.1134/S0081543811060149} \isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000295983200013} \elib{http://elibrary.ru/item.asp?id=23964433} \scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879911297} 

• http://mi.mathnet.ru/eng/tm3327
• http://mi.mathnet.ru/eng/tm/v274/p252

 SHARE:

Citing articles on Google Scholar: Russian citations, English citations
Related articles on Google Scholar: Russian articles, English articles

This publication is cited in the following articles:
1. Podolskii V.V., “Lower Bound on Weights of Large Degree Threshold Functions”, Log. Meth. Comput. Sci., 9:2 (2013), 13
•  Number of views: This page: 272 Full text: 29 References: 28