Trudy Matematicheskogo Instituta imeni V.A. Steklova
General information
Latest issue
Forthcoming papers
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Trudy Mat. Inst. Steklova:

Personal entry:
Save password
Forgotten password?

Trudy Mat. Inst. Steklova, 2011, Volume 275, Pages 22–54 (Mi tm3337)  

This article is cited in 8 scientific papers (total in 8 papers)

Nerve complexes and moment–angle spaces of convex polytopes

A. A. Aizenberga, V. M. Buchstaberb

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
b Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia

Abstract: We introduce spherical nerve complexes that are a far-reaching generalization of simplicial spheres, and consider the differential ring of simplicial complexes. We show that spherical nerve complexes form a subring of this ring, and define a homomorphism from the ring of polytopes to this subring that maps each polytope $P$ to the nerve $K_P$ of the cover of the boundary $\partial P$ by facets. We develop a theory of nerve complexes and apply it to the moment–angle spaces $\mathcal Z_P$ of convex polytopes $P$. In the case of a polytope $P$ with $m$ facets, its moment–angle space $\mathcal Z_P$ is defined by the canonical embedding in the cone $\mathbb R_\geq^m$. It is well-known that the space $\mathcal Z_P$ is homeomorphic to the polyhedral product $(D^2,S^1)^{\partial P^*}$ if the polytope $P$ is simple. We show that the homotopy equivalence $\mathcal Z_P\simeq(D^2,S^1)^{K_P}$ holds in the general case. On the basis of bigraded Betti numbers of simplicial complexes, we construct a new class of combinatorial invariants of convex polytopes. These invariants take values in the ring of polynomials in two variables and are multiplicative with respect to the direct product or join of polytopes. We describe the relation between these invariants and the well-known $f$-polynomials of polytopes. We also present examples of convex polytopes whose flag numbers (in particular, $f$-polynomials) coincide, while the new invariants are different.

Full text: PDF file (404 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2011, 275, 15–46

Bibliographic databases:

UDC: 515.164.8
Received in May 2011

Citation: A. A. Aizenberg, V. M. Buchstaber, “Nerve complexes and moment–angle spaces of convex polytopes”, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Collected papers. In commemoration of the 120th anniversary of Boris Nikolaevich Delone's birth, Trudy Mat. Inst. Steklova, 275, MAIK Nauka/Interperiodica, Moscow, 2011, 22–54; Proc. Steklov Inst. Math., 275 (2011), 15–46

Citation in format AMSBIB
\by A.~A.~Aizenberg, V.~M.~Buchstaber
\paper Nerve complexes and moment--angle spaces of convex polytopes
\inbook Classical and modern mathematics in the wake of Boris Nikolaevich Delone
\bookinfo Collected papers. In commemoration of the 120th anniversary of Boris Nikolaevich Delone's birth
\serial Trudy Mat. Inst. Steklova
\yr 2011
\vol 275
\pages 22--54
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\jour Proc. Steklov Inst. Math.
\yr 2011
\vol 275
\pages 15--46

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Aizenberg, “Topological applications of Stanley-Reisner rings of simplicial complexes”, Trans. Moscow Math. Soc., 73 (2012), 37–65  mathnet  crossref  zmath  elib
    2. A. A. Aizenberg, “Substitutions of polytopes and of simplicial complexes, and multigraded Betti numbers”, Trans. Moscow Math. Soc., 74 (2013), 175–202  mathnet  crossref  mathscinet  zmath  elib
    3. N. Yu. Erokhovets, “Buchstaber invariant theory of simplicial complexes and convex polytopes”, Proc. Steklov Inst. Math., 286 (2014), 128–187  mathnet  crossref  crossref  isi  elib  elib
    4. Ayzenberg A., “Locally standard torus actions and $h'$-numbers of simplicial posets”, J. Math. Soc. Jpn., 68:4 (2016), 1725–1745  crossref  mathscinet  zmath  isi  scopus
    5. Ayzenberg A., “Buchstaber Invariant, Minimal Non-Simplices and Related”, Osaka J. Math., 53:2 (2016), 377–395  mathscinet  zmath  isi  elib
    6. Lopez de Medrano S., “Singular Intersections of Quadrics i”, Singularities in Geometry, Topology, Foliations and Dynamics: a Celebration of the 60Th Birthday of Jose Seade, Trends in Mathematics, eds. CisnerosMolina J., Le D., Oka M., Snoussi J., Springer International Publishing Ag, 2017, 155–170  crossref  mathscinet  isi
    7. Lopez de Medrano S., “Samuel Gitler and the topology of intersections of quadrics”, Bol. Soc. Mat. Mex., 23:1, SI (2017), 5–21  crossref  mathscinet  zmath  isi
    8. A. A. Ayzenberg, V. M. Buchstaber, “Manifolds of isospectral arrow matrices”, Sb. Math., 212:5 (2021), 605–635  mathnet  crossref  crossref  isi  elib
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:349
    Full text:39

    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021