|
Tr. Mat. Inst. Steklova, 2012, Volume 277, Pages 33–48
(Mi tm3382)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Maximal inequality and ergodic theorems for Markov groups
A. I. Bufetovabc, A. V. Klimenkoab a Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
b National Research University Higher School of Economics, Moscow, Russia
c Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
Abstract:
The paper shows that for actions of Markov semigroups, in particular, of finitely generated word hyperbolic groups, the Cesàro means of spherical averages converge almost everywhere for any function from the class $L^p$, $p>1$.
Full text:
PDF file (251 kB)
References:
PDF file
HTML file
English version:
Proceedings of the Steklov Institute of Mathematics, 2012, 277, 27–42
Bibliographic databases:
UDC:
517.987.5 Received in January 2012
Citation:
A. I. Bufetov, A. V. Klimenko, “Maximal inequality and ergodic theorems for Markov groups”, Mathematical control theory and differential equations, Collected papers. In commemoration of the 90th anniversary of Academician Evgenii Frolovich Mishchenko, Tr. Mat. Inst. Steklova, 277, MAIK Nauka/Interperiodica, Moscow, 2012, 33–48; Proc. Steklov Inst. Math., 277 (2012), 27–42
Citation in format AMSBIB
\Bibitem{BufKli12}
\by A.~I.~Bufetov, A.~V.~Klimenko
\paper Maximal inequality and ergodic theorems for Markov groups
\inbook Mathematical control theory and differential equations
\bookinfo Collected papers. In commemoration of the 90th anniversary of Academician Evgenii Frolovich Mishchenko
\serial Tr. Mat. Inst. Steklova
\yr 2012
\vol 277
\pages 33--48
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3382}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3052262}
\elib{https://elibrary.ru/item.asp?id=17759396}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 277
\pages 27--42
\crossref{https://doi.org/10.1134/S0081543812040037}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000309232900003}
\elib{https://elibrary.ru/item.asp?id=23960342}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84904048307}
Linking options:
http://mi.mathnet.ru/eng/tm3382 http://mi.mathnet.ru/eng/tm/v277/p33
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Bowen L., Nevo A., “Von Neumann and Birkhoff Ergodic Theorems For Negatively Curved Groups”, Ann. Sci. Ec. Norm. Super., 48:5 (2015), 1113–1147
-
Bowen L., Nevo A., “Amenable Equivalence Relations and the Construction of Ergodic Averages For Group Actions”, J. Anal. Math., 126:1 (2015), 359–388
|
Number of views: |
This page: | 242 | Full text: | 43 | References: | 44 |
|