RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2012, Volume 278, Pages 178–187 (Mi tm3403)  

This article is cited in 5 scientific papers (total in 5 papers)

On the calculation of the polar cone of the solution set of a differential inclusion

E. S. Polovinkin

Moscow Institute of Physics and Technology, State University, Dolgoprudnyi, Moscow oblast, Russia

Abstract: A general form of the polar cone is obtained for the solution set of an arbitrary differential inclusion such that the graph of its right-hand side is a convex closed cone and the solutions take values in a reflexive Banach space.

Full text: PDF file (193 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2012, 278, 169–178

Bibliographic databases:

UDC: 517.9
Received in May 2012

Citation: E. S. Polovinkin, “On the calculation of the polar cone of the solution set of a differential inclusion”, Differential equations and dynamical systems, Collected papers, Tr. Mat. Inst. Steklova, 278, MAIK Nauka/Interperiodica, Moscow, 2012, 178–187; Proc. Steklov Inst. Math., 278 (2012), 169–178

Citation in format AMSBIB
\Bibitem{Pol12}
\by E.~S.~Polovinkin
\paper On the calculation of the polar cone of the solution set of a~differential inclusion
\inbook Differential equations and dynamical systems
\bookinfo Collected papers
\serial Tr. Mat. Inst. Steklova
\yr 2012
\vol 278
\pages 178--187
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3403}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3058794}
\elib{http://elibrary.ru/item.asp?id=17928422}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 278
\pages 169--178
\crossref{https://doi.org/10.1134/S008154381206017X}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000309861500017}
\elib{http://elibrary.ru/item.asp?id=20494623}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84867362465}


Linking options:
  • http://mi.mathnet.ru/eng/tm3403
  • http://mi.mathnet.ru/eng/tm/v278/p178

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. S. Polovinkin, “Differential inclusions with measurable-pseudo-Lipschitz right-hand side”, Proc. Steklov Inst. Math., 283 (2013), 116–135  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    2. E. S. Polovinkin, “On the weak polar cone of the solution set of a differential inclusion with conic graph”, Proc. Steklov Inst. Math. (Suppl.), 292, suppl. 1 (2016), 253–261  mathnet  crossref  mathscinet  isi  elib
    3. E. S. Polovinkin, “Differential inclusions with unbounded right-hand side and necessary optimality conditions”, Proc. Steklov Inst. Math., 291 (2015), 237–252  mathnet  crossref  crossref  isi  elib
    4. Polovinkin E.S., “Necessary Optimality Conditions For the Mayer Problem With Unbounded Differential Inclusion”, IFAC PAPERSONLINE, 51:32 (2018), 521–524  crossref  isi  scopus
    5. E. S. Polovinkin, “Pontryagin's Direct Method for Optimization Problems with Differential Inclusion”, Proc. Steklov Inst. Math., 304 (2019), 241–256  mathnet  crossref  crossref  elib
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:227
    Full text:29
    References:43

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020