|
Tr. Mat. Inst. Steklova, 2012, Volume 279, Pages 227–241
(Mi tm3430)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
New conditions for uniform approximation by polyanalytic polynomials
J. J. Carmonaa, K. Yu. Fedorovskiyb a Departament de Matemàtiques, Edifici C, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
b Department of Applied Mathematics, Bauman Moscow State Technical University, Moscow, Russia
Abstract:
We are interested in the problem of uniform approximability of functions by polyanalytic polynomials on compact subsets of the plane. We present new results showing the nature of the approximability conditions arising in this problem and their dependence on the order of polyanalyticity.
Full text:
PDF file (246 kB)
References:
PDF file
HTML file
English version:
Proceedings of the Steklov Institute of Mathematics, 2012, 279, 215–229
Bibliographic databases:
UDC:
517.518.82 Received in January 2012
Language:
Citation:
J. J. Carmona, K. Yu. Fedorovskiy, “New conditions for uniform approximation by polyanalytic polynomials”, Analytic and geometric issues of complex analysis, Collected papers, Tr. Mat. Inst. Steklova, 279, MAIK Nauka/Interperiodica, Moscow, 2012, 227–241; Proc. Steklov Inst. Math., 279 (2012), 215–229
Citation in format AMSBIB
\Bibitem{CarFed12}
\by J.~J.~Carmona, K.~Yu.~Fedorovskiy
\paper New conditions for uniform approximation by polyanalytic polynomials
\inbook Analytic and geometric issues of complex analysis
\bookinfo Collected papers
\serial Tr. Mat. Inst. Steklova
\yr 2012
\vol 279
\pages 227--241
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3430}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3086767}
\elib{https://elibrary.ru/item.asp?id=18447457}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 279
\pages 215--229
\crossref{https://doi.org/10.1134/S0081543812080159}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000314063000015}
Linking options:
http://mi.mathnet.ru/eng/tm3430 http://mi.mathnet.ru/eng/tm/v279/p227
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
M. Ya. Mazalov, P. V. Paramonov, K. Yu. Fedorovskiy, “Conditions for $C^m$-approximability of functions by solutions of elliptic equations”, Russian Math. Surveys, 67:6 (2012), 1023–1068
-
K. Yu. Fedorovskiy, “Carathéodory domains and Rudin's converse of the maximum modulus principle”, Sb. Math., 206:1 (2015), 161–174
-
V. I. Danchenko, “Cauchy and Poisson formulas for polyanalytic functions and applications”, Russian Math. (Iz. VUZ), 60:1 (2016), 11–21
-
Abakumov E., Fedorovskiy K., “Analytic Balayage of Measures, Caratheodory Domains, and Badly Approximable Functions in l-P”, C. R. Math., 356:8 (2018), 870–874
-
K. Yu. Fedorovskiy, “Carathéodory sets and analytic balayage of measures”, Sb. Math., 209:9 (2018), 1376–1389
|
Number of views: |
This page: | 190 | Full text: | 27 | References: | 36 |
|