RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2012, Volume 279, Pages 269–287 (Mi tm3432)  

This article is cited in 3 scientific papers (total in 3 papers)

Bochner–Hartogs type extension theorem for roots and logarithms of holomorphic line bundles

S. Ivashkovichab

a Université Lille-1, UFR de Mathématiques, Villeneuve d'Ascq, France
b Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine, L'viv, Ukrain

Abstract: We prove an extension theorem for roots and logarithms of holomorphic line bundles across strictly pseudoconcave boundaries: they extend in all cases except one, when the dimension and Morse index of a critical point is 2. In that case we give an explicit description of obstructions to the extension.

Full text: PDF file (312 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2012, 279, 257–275

Bibliographic databases:

UDC: 517.55
Received in April 2011
Language:

Citation: S. Ivashkovich, “Bochner–Hartogs type extension theorem for roots and logarithms of holomorphic line bundles”, Analytic and geometric issues of complex analysis, Collected papers, Tr. Mat. Inst. Steklova, 279, MAIK Nauka/Interperiodica, Moscow, 2012, 269–287; Proc. Steklov Inst. Math., 279 (2012), 257–275

Citation in format AMSBIB
\Bibitem{Iva12}
\by S.~Ivashkovich
\paper Bochner--Hartogs type extension theorem for roots and logarithms of holomorphic line bundles
\inbook Analytic and geometric issues of complex analysis
\bookinfo Collected papers
\serial Tr. Mat. Inst. Steklova
\yr 2012
\vol 279
\pages 269--287
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3432}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3086770}
\elib{https://elibrary.ru/item.asp?id=18447462}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 279
\pages 257--275
\crossref{https://doi.org/10.1134/S0081543812080184}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000314063000018}


Linking options:
  • http://mi.mathnet.ru/eng/tm3432
  • http://mi.mathnet.ru/eng/tm/v279/p269

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. R. B. Andrist, N. Shcherbina, E. F. Wold, “The Hartogs extension theorem for holomorphic vector bundles and sprays”, Ark. Mat., 54:2 (2016), 299–319  crossref  mathscinet  zmath  isi  scopus
    2. C. Canales Gonzalez, “Levi-flat hypersurfaces and their complement in complex surfaces”, Ann. Inst. Fourier, 67:6 (2017), 2423–2462  crossref  mathscinet  isi
    3. Zh. Chen, “A counterexample to Hartogs' type extension of holomorphic line bundles”, J. Geom. Anal., 28:3 (2018), 2624–2643  crossref  mathscinet  isi  scopus
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:130
    Full text:45
    References:23

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020