RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2012, Volume 279, Pages 20–30 (Mi tm3437)  

This article is cited in 2 scientific papers (total in 2 papers)

Model-surface method: An infinite-dimensional version

V. K. Beloshapka

Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia

Abstract: The model-surface method is applied to the study of real analytic submanifolds of a complex Hilbert space. Generally, the results are analogous to those in the finite-dimensional case; however, there are some peculiarities and specific difficulties. One of these peculiarities is the existence of a model surface with the Levi–Tanaka algebra of infinite length.

Full text: PDF file (193 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2012, 279, 14–24

Bibliographic databases:

UDC: 517.55
Received in November 2011

Citation: V. K. Beloshapka, “Model-surface method: An infinite-dimensional version”, Analytic and geometric issues of complex analysis, Collected papers, Tr. Mat. Inst. Steklova, 279, MAIK Nauka/Interperiodica, Moscow, 2012, 20–30; Proc. Steklov Inst. Math., 279 (2012), 14–24

Citation in format AMSBIB
\Bibitem{Bel12}
\by V.~K.~Beloshapka
\paper Model-surface method: An infinite-dimensional version
\inbook Analytic and geometric issues of complex analysis
\bookinfo Collected papers
\serial Tr. Mat. Inst. Steklova
\yr 2012
\vol 279
\pages 20--30
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3437}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3086755}
\elib{http://elibrary.ru/item.asp?id=18447428}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 279
\pages 14--24
\crossref{https://doi.org/10.1134/S0081543812080032}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000314063000003}


Linking options:
  • http://mi.mathnet.ru/eng/tm3437
  • http://mi.mathnet.ru/eng/tm/v279/p20

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Sabzevari M., “On the Maximum Conjecture”, Forum Math., 30:6 (2018), 1599–1608  crossref  mathscinet  zmath  isi  scopus
    2. M. A. Stepanova, “Ob avtomorfizmakh CR-podmnogoobrazii kompleksnogo gilbertova prostranstva”, Sib. elektron. matem. izv., 17 (2020), 126–140  mathnet  crossref
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:215
    Full text:45
    References:37

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020