RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2013, Volume 280, Pages 97–125 (Mi tm3450)  

This article is cited in 15 scientific papers (total in 15 papers)

Widths of weighted Sobolev classes on a John domain

A. A. Vasil'eva

Faculty of Mechanics and Mathematics, M. V. Lomonosov Moscow State University, Moscow, Russia

DOI: https://doi.org/10.1134/S0371968513010068

Full text: PDF file (389 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2013, 280, 91–119

Bibliographic databases:

UDC: 517.982.256
Received in March 2012

Citation: A. A. Vasil'eva, “Widths of weighted Sobolev classes on a John domain”, Orthogonal series, approximation theory, and related problems, Collected papers. Dedicated to Academician Boris Sergeevich Kashin on the occasion of his 60th birthday, Tr. Mat. Inst. Steklova, 280, MAIK Nauka/Interperiodica, Moscow, 2013, 97–125; Proc. Steklov Inst. Math., 280 (2013), 91–119

Citation in format AMSBIB
\Bibitem{Vas13}
\by A.~A.~Vasil'eva
\paper Widths of weighted Sobolev classes on a~John domain
\inbook Orthogonal series, approximation theory, and related problems
\bookinfo Collected papers. Dedicated to Academician Boris Sergeevich Kashin on the occasion of his 60th birthday
\serial Tr. Mat. Inst. Steklova
\yr 2013
\vol 280
\pages 97--125
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3450}
\crossref{https://doi.org/10.1134/S0371968513010068}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3241838}
\elib{http://elibrary.ru/item.asp?id=18893031}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2013
\vol 280
\pages 91--119
\crossref{https://doi.org/10.1134/S0081543813010069}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000320459700006}
\elib{http://elibrary.ru/item.asp?id=20431873}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876423943}


Linking options:
  • http://mi.mathnet.ru/eng/tm3450
  • https://doi.org/10.1134/S0371968513010068
  • http://mi.mathnet.ru/eng/tm/v280/p97

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. O. V. Besov, “Kolmogorov widths of Sobolev classes on an irregular domain”, Proc. Steklov Inst. Math., 280 (2013), 34–45  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    2. A. A. Vasil'eva, “Embedding theorem for weighted Sobolev classes on a John domain with weights that are functions of the distance to some $h$-set”, Russ. J. Math. Phys., 20:3 (2013), 360–373  crossref  mathscinet  zmath  isi  scopus
    3. A. A. Vasil'eva, “Embedding theorem for weighted Sobolev classes with weights that are functions of the distance to some $h$-set”, Russ. J. Math. Phys., 21:1 (2014), 112–122  crossref  mathscinet  zmath  isi  scopus
    4. A. A. Vasil'eva, “Widths of weighted Sobolev classes on a John domain: strong singularity at a point”, Rev. Mat. Complut., 27:1 (2014), 167–212  crossref  mathscinet  zmath  isi  scopus
    5. A. A. Vasil'eva, “Embeddings of weighted Sobolev classes on a John domain”, Eurasian Math. J., 5:3 (2014), 129–134  mathnet
    6. A. A. Vasil'eva, “Some sufficient conditions for embedding a weighted Sobolev class on a John domain”, Siberian Math. J., 56:1 (2015), 54–67  mathnet  crossref  mathscinet  isi  elib  elib
    7. Vasil'eva A.A., “Widths of Function Classes on Sets With Tree-Like Structure”, J. Approx. Theory, 192 (2015), 19–59  crossref  mathscinet  zmath  isi  scopus
    8. Vasil'eva A.A., “Widths of Weighted Sobolev Classes With Weights That Are Functions of the Distance To Some H-Set: Some Limit Cases”, Russ. J. Math. Phys., 22:1 (2015), 127–140  crossref  mathscinet  zmath  isi  scopus
    9. A. A. Vasil'eva, “Widths of Sobolev weight classes on a domain with cusp”, Sb. Math., 206:10 (2015), 1375–1409  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. Vasil'eva A.A., “Estimates for the entropy numbers of embedding operators of function spaces on sets with tree-like structure: Some limiting cases”, J. Complex., 36 (2016), 74–105  crossref  mathscinet  zmath  isi  scopus
    11. Vasil'eva A.A., “Embedding theorems for a weighted Sobolev class in the space $L_{q,v}$ with weights having a singularity at a point: Case $v\notin L_q^1$”, Russ. J. Math. Phys., 23:3 (2016), 392–424  crossref  mathscinet  zmath  isi  scopus
    12. A. A. Vasil'eva, “Entropy numbers of embedding operators of function spaces on sets with tree-like structure”, Izv. Math., 81:6 (2017), 1095–1142  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    13. F. Lopez-Garcia, “Weighted Korn inequalities on John domains”, Studia Math., 241:1 (2018), 17–39  crossref  mathscinet  zmath  isi  scopus
    14. A. A. Vasil'eva, “Entropy numbers of embeddings of function spaces on sets with tree-like structure: some generalized limiting cases”, Russ. J. Math. Phys., 25:2 (2018), 248–270  crossref  mathscinet  isi  scopus
    15. F. Lopez-Garcia, “Weighted generalized Korn inequalities on John domains”, Math. Meth. Appl. Sci., 41:17, SI (2018), 8003–8018  crossref  mathscinet  zmath  isi
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:348
    Full text:30
    References:65

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020