RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2013, Volume 282, Pages 315–335 (Mi tm3498)  

Random $A$-permutations and Brownian motion

A. L. Yakymiv

Steklov Mathematical Institute of the Russian Academy of Sciences, Moscow, Russia

Abstract: We consider a random permutation $\tau _n$ uniformly distributed over the set of all degree $n$ permutations whose cycle lengths belong to a fixed set $A$ (the so-called $A$-permutations). Let $X_n(t)$ be the number of cycles of the random permutation $\tau _n$ whose lengths are not greater than $n^t$, $t\in[0,1]$, and $l(t)=\sum_{i\leq t,i\in A}1/i$, $t>0$. In this paper, we show that the finite-dimensional distributions of the random process $\{Y_n(t)=(X_n(t)-l(n^t))/\sqrt{\varrho\ln n}$, $t\in[0,1]\}$ converge weakly as $n\to\infty$ to the finite-dimensional distributions of the standard Brownian motion $\{W(t),t\in[0,1]\}$ in a certain class of sets $A$ of positive asymptotic density $\varrho$.

DOI: https://doi.org/10.1134/S0371968513030217

Full text: PDF file (301 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2013, 282, 298–318

Bibliographic databases:

UDC: 519.212.2+519.218.1
Received in March 2012

Citation: A. L. Yakymiv, “Random $A$-permutations and Brownian motion”, Branching processes, random walks, and related problems, Collected papers. Dedicated to the memory of Boris Aleksandrovich Sevastyanov, corresponding member of the Russian Academy of Sciences, Tr. Mat. Inst. Steklova, 282, MAIK Nauka/Interperiodica, Moscow, 2013, 315–335; Proc. Steklov Inst. Math., 282 (2013), 298–318

Citation in format AMSBIB
\Bibitem{Yak13}
\by A.~L.~Yakymiv
\paper Random $A$-permutations and Brownian motion
\inbook Branching processes, random walks, and related problems
\bookinfo Collected papers. Dedicated to the memory of Boris Aleksandrovich Sevastyanov, corresponding member of the Russian Academy of Sciences
\serial Tr. Mat. Inst. Steklova
\yr 2013
\vol 282
\pages 315--335
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3498}
\crossref{https://doi.org/10.1134/S0371968513030217}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3308597}
\elib{http://elibrary.ru/item.asp?id=20280561}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2013
\vol 282
\pages 298--318
\crossref{https://doi.org/10.1134/S0081543813060217}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000325961800021}
\elib{http://elibrary.ru/item.asp?id=21883258}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84885963925}


Linking options:
  • http://mi.mathnet.ru/eng/tm3498
  • https://doi.org/10.1134/S0371968513030217
  • http://mi.mathnet.ru/eng/tm/v282/p315

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:217
    Full text:8
    References:39

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019