|
Tr. Mat. Inst. Steklova, 2014, Volume 284, Pages 8–37
(Mi tm3533)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
Nonlinear approximations of classes of periodic functions of many variables
D. B. Bazarkhanov Institute of Mathematics, Almaty, Kazakhstan
Abstract:
Order-sharp estimates are established for the best $N$-term approximations of functions in the classes $\mathrm B^{sm}_{pq}(\mathbb T^k)$ and $\mathrm L^{sm}_{pq}(\mathbb T^k)$ of Nikol'skii–Besov and Lizorkin–Triebel types with respect to the multiple system $\widetilde {\mathcal W}^m$ of Meyer wavelets in the metric of $L_r(\mathbb T^k)$ for various relations between the parameters $s,p,q,r$, and $m$ ($s=(s_1,…,s_n)\in\mathbb R^n_+$, $1\leq p,q,r\leq\infty$, $m=(m_1,…,m_n)\in\mathbb N^n$, and $k=m_1+…+m_n$). The proof of upper estimates is based on variants of the so-called greedy algorithms.
DOI:
https://doi.org/10.1134/S0371968514010026
Full text:
PDF file (387 kB)
References:
PDF file
HTML file
English version:
Proceedings of the Steklov Institute of Mathematics, 2014, 284, 2–31
Bibliographic databases:
UDC:
517.518.8 Received in April 2013
Citation:
D. B. Bazarkhanov, “Nonlinear approximations of classes of periodic functions of many variables”, Function spaces and related problems of analysis, Collected papers. Dedicated to Oleg Vladimirovich Besov, corresponding member of the Russian Academy of Sciences, on the occasion of his 80th birthday, Tr. Mat. Inst. Steklova, 284, MAIK Nauka/Interperiodica, Moscow, 2014, 8–37; Proc. Steklov Inst. Math., 284 (2014), 2–31
Citation in format AMSBIB
\Bibitem{Baz14}
\by D.~B.~Bazarkhanov
\paper Nonlinear approximations of classes of periodic functions of many variables
\inbook Function spaces and related problems of analysis
\bookinfo Collected papers. Dedicated to Oleg Vladimirovich Besov, corresponding member of the Russian Academy of Sciences, on the occasion of his 80th birthday
\serial Tr. Mat. Inst. Steklova
\yr 2014
\vol 284
\pages 8--37
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3533}
\crossref{https://doi.org/10.1134/S0371968514010026}
\elib{https://elibrary.ru/item.asp?id=21249100}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 284
\pages 2--31
\crossref{https://doi.org/10.1134/S0081543814010027}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000335559000001}
\elib{https://elibrary.ru/item.asp?id=27832582}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899814244}
Linking options:
http://mi.mathnet.ru/eng/tm3533https://doi.org/10.1134/S0371968514010026 http://mi.mathnet.ru/eng/tm/v284/p8
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Sh. A. Balgimbayeva, “Nonlinear approximation of function spaces of mixed smoothness”, Siberian Math. J., 56:2 (2015), 262–274
-
D. B. Bazarkhanov, “Nonlinear trigonometric approximations of multivariate function classes”, Proc. Steklov Inst. Math., 293 (2016), 2–36
-
S. Balgimbayeva, T. Smirnov, “Nonlinear wavelet approximation of periodic function classes with generalized mixed smoothnes”, Anal. Math., 43:1 (2017), 1–26
-
D. B. Bazarkhanov, “Sparse approximation of some function classes with respect to multiple Haar system on the unit cube”, International conference functional analysis in interdisciplinary applications (FAIA 2017), AIP Conf. Proc., 1880, ed. T. Kalmenov, M. Sadybekov, Amer. Inst. Phys., 2017, UNSP 030017
|
Number of views: |
This page: | 332 | Full text: | 48 | References: | 98 |
|