Trudy Matematicheskogo Instituta imeni V.A. Steklova
General information
Latest issue
Forthcoming papers
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Trudy Mat. Inst. Steklova:

Personal entry:
Save password
Forgotten password?

Trudy Mat. Inst. Steklova, 2014, Volume 285, Pages 166–206 (Mi tm3546)  

This article is cited in 7 scientific papers (total in 7 papers)

$p$-Adic wavelets and their applications

S. V. Kozyreva, A. Yu. Khrennikovb, V. M. Shelkovichcd

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b International Center for Mathematical Modeling in Physics, Engineering and Cognitive Sciences, Linnaeus University, Växjö, Sweden
c St. Petersburg State University, Faculty of Physics, St. Petersburg, Russia
d St. Petersburg State University of Architecture and Civil Engineering, St. Petersburg, Russia

Abstract: The theory of $p$-adic wavelets is presented. One-dimensional and multidimensional wavelet bases and their relation to the spectral theory of pseudodifferential operators are discussed. For the first time, bases of compactly supported eigenvectors for $p$-adic pseudodifferential operators were considered by V. S. Vladimirov. In contrast to real wavelets, $p$-adic wavelets are related to the group representation theory; namely, the frames of $p$-adic wavelets are the orbits of $p$-adic transformation groups (systems of coherent states). A $p$-adic multiresolution analysis is considered and is shown to be a particular case of the construction of a $p$-adic wavelet frame as an orbit of the action of the affine group.

Funding Agency Grant Number
Russian Academy of Sciences - Federal Agency for Scientific Organizations
Linnaeus University
This work was supported in part by the grants "Mathematical Modeling and System Collaboration" and "Mathematical Modeling of Complex Hierarchic Systems" from the Faculty of Natural Science and Engineering, Linnaeus University. The first author was also supported in part by the Russian Academy of Sciences within the program "Modern Problems of Theoretical Mathematics."


Full text: PDF file (448 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2014, 285, 157–196

Bibliographic databases:

UDC: 517.5+517.984.5
Received in October 2013

Citation: S. V. Kozyrev, A. Yu. Khrennikov, V. M. Shelkovich, “$p$-Adic wavelets and their applications”, Selected topics of mathematical physics and analysis, Collected papers. In commemoration of the 90th anniversary of Academician Vasilii Sergeevich Vladimirov's birth, Trudy Mat. Inst. Steklova, 285, MAIK Nauka/Interperiodica, Moscow, 2014, 166–206; Proc. Steklov Inst. Math., 285 (2014), 157–196

Citation in format AMSBIB
\by S.~V.~Kozyrev, A.~Yu.~Khrennikov, V.~M.~Shelkovich
\paper $p$-Adic wavelets and their applications
\inbook Selected topics of mathematical physics and analysis
\bookinfo Collected papers. In commemoration of the 90th anniversary of Academician Vasilii Sergeevich Vladimirov's birth
\serial Trudy Mat. Inst. Steklova
\yr 2014
\vol 285
\pages 166--206
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 285
\pages 157--196

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. Evdokimov, “On non-compactly supported $p$-adic wavelets”, J. Math. Anal. Appl., 443:2 (2016), 1260–1266  crossref  mathscinet  zmath  isi  elib  scopus
    2. V. Al Osipov, “Wavelet analysis on symbolic sequences and two-fold de Bruijn sequences”, J. Stat. Phys., 164:1 (2016), 142–165  crossref  mathscinet  zmath  isi  elib  scopus
    3. B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, E. I. Zelenov, “$p$-Adic mathematical physics: the first 30 years”, P-Adic Numbers Ultrametric Anal. Appl., 9:2 (2017), 87–121  crossref  mathscinet  zmath  isi  scopus
    4. B. Behera, Q. Jahan, “Affine, quasi-affine and co-affine frames on local fields of positive characteristic”, Math. Nachr., 290:14-15 (2017), 2154–2169  crossref  mathscinet  zmath  isi  scopus
    5. P. Dutta, D. Ghoshal, A. Lala, “Enhanced symmetry of the $p$-adic wavelets”, Phys. Lett. B, 783 (2018), 421–427  crossref  mathscinet  isi  scopus
    6. Yu. A. Farkov, “Diskretnye veivlet-preobrazovaniya v analize Uolsha”, Materialy mezhdunarodnoi konferentsii«InternationalConference onMathematicalModellinginAppliedSciences, ICMMAS-17», Sankt-Peterburgskii politekhnicheskii universitet,2428 iyulya2017 g., Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 160, VINITI RAN, M., 2019, 126–136  mathnet  mathscinet
    7. Ahmad O., Ahmad N., “Construction of Nonuniform Wavelet Frames on Non-Archimedean Fields”, Math. Phys. Anal. Geom., 23:4 (2020), 47  crossref  mathscinet  isi
  •    . . .  Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:510
    Full text:115

    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021