RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2014, Volume 285, Pages 41–63 (Mi tm3547)  

This article is cited in 1 scientific paper (total in 1 paper)

A weak generalized localization criterion for multiple Walsh–Fourier series with $J_k$-lacunary sequence of rectangular partial sums

S. K. Bloshanskayaa, I. L. Bloshanskiib

a National Engineering Physics Institute "MEPhI", Moscow, Russia
b Moscow State Region University, Moscow, Russia

Abstract: We obtain a criterion for the validity of weak generalized localization almost everywhere on an arbitrary set of positive measure $\mathfrak A$, $\mathfrak A\subset\mathbb I^N=\{x\in\mathbb R^N\colon0\leq x_j<1,  j=1,2,…,N\}$, $N\geq3$ (in terms of the structure and geometry of the set $\mathfrak A$), for multiple Walsh–Fourier series (summed over rectangles) of functions $f$ in the classes $L_p(\mathbb I^N)$, $p>1$ (i.e., necessary and sufficient conditions for the convergence almost everywhere of the Fourier series on some subset of positive measure $\mathfrak A_1$ of the set $\mathfrak A$, when the function expanded in a series equals zero on $\mathfrak A$), in the case when the rectangular partial sums $S_n(x;f)$ of this series have indices $n=(n_1,…,n_N)\in\mathbb Z^N$ in which some components are elements of (single) lacunary sequences.

DOI: https://doi.org/10.1134/S0371968514020058

Full text: PDF file (335 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2014, 285, 34–55

Bibliographic databases:

UDC: 517.5
Received in September 2013

Citation: S. K. Bloshanskaya, I. L. Bloshanskii, “A weak generalized localization criterion for multiple Walsh–Fourier series with $J_k$-lacunary sequence of rectangular partial sums”, Selected topics of mathematical physics and analysis, Collected papers. In commemoration of the 90th anniversary of Academician Vasilii Sergeevich Vladimirov's birth, Tr. Mat. Inst. Steklova, 285, MAIK Nauka/Interperiodica, Moscow, 2014, 41–63; Proc. Steklov Inst. Math., 285 (2014), 34–55

Citation in format AMSBIB
\Bibitem{BloBlo14}
\by S.~K.~Bloshanskaya, I.~L.~Bloshanskii
\paper A weak generalized localization criterion for multiple Walsh--Fourier series with $J_k$-lacunary sequence of rectangular partial sums
\inbook Selected topics of mathematical physics and analysis
\bookinfo Collected papers. In commemoration of the 90th anniversary of Academician Vasilii Sergeevich Vladimirov's birth
\serial Tr. Mat. Inst. Steklova
\yr 2014
\vol 285
\pages 41--63
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3547}
\crossref{https://doi.org/10.1134/S0371968514020058}
\elib{http://elibrary.ru/item.asp?id=21726841}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 285
\pages 34--55
\crossref{https://doi.org/10.1134/S0081543814040051}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000339949700005}
\elib{http://elibrary.ru/item.asp?id=24048661}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84926365606}


Linking options:
  • http://mi.mathnet.ru/eng/tm3547
  • https://doi.org/10.1134/S0371968514020058
  • http://mi.mathnet.ru/eng/tm/v285/p41

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Bloshanskaya S.K., Bloshanskii I.L., “Convergence and Localization in Orlicz Classes For Multiple Walsh-Fourier Series With a Lacunary Sequence of Rectangular Partial Sums”, J. Math. Anal. Appl., 435:1 (2016), 765–782  crossref  mathscinet  zmath  isi  elib  scopus
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:214
    Full text:19
    References:44

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019