|
Тр. МИАН, 2014, том 285, страницы 64–88
(Mi tm3551)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Об универсальной краевой задаче для уравнений математической физики
И. В. Воловичa, В. Ж. Сакбаевb a Математический институт им. В. А. Стеклова РАН, Москва, Россия
b Московский физико-технический институт (государственный университет), Долгопрудный, Россия
Аннотация:
Обсуждается новая постановка краевой задачи для уравнений с частными производными. Рассматривается произвольное решение эллиптического, гиперболического или параболического линейного дифференциального уравнения второго порядка в заданной области евклидова пространства без каких либо условий на его граничные значения и граничные значения его производных. Изучается, каким условиям должны удовлетворять граничные значения функции и ее нормальной производной, если эта функция является решением рассматриваемого линейного дифференциального уравнения. Определено линейное интегральное уравнение для граничных значений решения и его нормальной производной, которое будем называть универсальным граничным уравнением. Универсальной краевой задачей называется линейное дифференциальное уравнение совместно с универсальным граничным уравнением. В статье исследована универсальная краевая задача для таких уравнений математической физики, как уравнение Лапласа, волновое уравнение и уравнение теплопроводности. Указано на приложения исследований универсальной краевой задачи в проблемах космологии и квантовой механики.
DOI:
https://doi.org/10.1134/S037196851402006X
Полный текст:
PDF файл (312 kB)
Список литературы:
PDF файл
HTML файл
Англоязычная версия:
Proceedings of the Steklov Institute of Mathematics, 2014, 285, 56–80
Реферативные базы данных:
Тип публикации:
Статья
УДК:
517.98 Поступило в феврале 2014 г.
Образец цитирования:
И. В. Волович, В. Ж. Сакбаев, “Об универсальной краевой задаче для уравнений математической физики”, Избранные вопросы математической физики и анализа, Сборник статей. К 90-летию со дня рождения академика Василия Сергеевича Владимирова, Тр. МИАН, 285, МАИК «Наука/Интерпериодика», М., 2014, 64–88; Proc. Steklov Inst. Math., 285 (2014), 56–80
Цитирование в формате AMSBIB
\RBibitem{VolSak14}
\by И.~В.~Волович, В.~Ж.~Сакбаев
\paper Об универсальной краевой задаче для уравнений математической физики
\inbook Избранные вопросы математической физики и анализа
\bookinfo Сборник статей. К~90-летию со дня рождения академика Василия Сергеевича Владимирова
\serial Тр. МИАН
\yr 2014
\vol 285
\pages 64--88
\publ МАИК «Наука/Интерпериодика»
\publaddr М.
\mathnet{http://mi.mathnet.ru/tm3551}
\crossref{https://doi.org/10.1134/S037196851402006X}
\elib{https://elibrary.ru/item.asp?id=21726842}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 285
\pages 56--80
\crossref{https://doi.org/10.1134/S0081543814040063}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000339949700006}
\elib{https://elibrary.ru/item.asp?id=24048406}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84926306257}
Образцы ссылок на эту страницу:
http://mi.mathnet.ru/tm3551https://doi.org/10.1134/S037196851402006X http://mi.mathnet.ru/rus/tm/v285/p64
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Эта публикация цитируется в следующих статьяx:
-
Л. С. Ефремова, В. Ж. Сакбаев, “Понятие взрыва множества решений дифференциальных уравнений и усреднение случайных полугрупп”, ТМФ, 185:2 (2015), 252–271
; L. S. Efremova, V. Zh. Sakbaev, “Notion of blowup of the solution set of differential equations and averaging of random semigroups”, Theoret. and Math. Phys., 185:2 (2015), 1582–1598 -
V. Zh. Sakbaev, I. V. Volovich, “Self-adjoint approximations of the degenerate Schrödinger operator”, P-Adic Numbers Ultrametric Anal. Appl., 9:1 (2017), 39–52
|
Просмотров: |
Эта страница: | 438 | Полный текст: | 77 | Литература: | 92 |
|