Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Mat. Inst. Steklova, 2014, Volume 286, Pages 144–206 (Mi tm3559)  

This article is cited in 5 scientific papers (total in 5 papers)

Buchstaber invariant theory of simplicial complexes and convex polytopes

N. Yu. Erokhovets

Lomonosov Moscow State University, Moscow, Russia

Abstract: The survey is devoted to the theory of a combinatorial invariant of simple convex polytopes and simplicial complexes that was introduced by V. M. Buchstaber on the basis of constructions of toric topology. We describe methods for calculating this invariant and its relation to other classical and modern combinatorial invariants and constructions, calculate the invariant for special classes of polytopes and simplicial complexes, and find a criterion for this invariant to be equal to a given small number. We also describe a relation to matroid theory, which allows one to apply the results of this theory to the description of the real Buchstaber number in terms of subcomplexes of the Alexander dual simplicial complex.

DOI: https://doi.org/10.1134/S037196851403008X

Full text: PDF file (633 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2014, 286, 128–187

Bibliographic databases:

UDC: 515.164.8+514.172.45
Received in June 2014

Citation: N. Yu. Erokhovets, “Buchstaber invariant theory of simplicial complexes and convex polytopes”, Algebraic topology, convex polytopes, and related topics, Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 286, MAIK Nauka/Interperiodica, Moscow, 2014, 144–206; Proc. Steklov Inst. Math., 286 (2014), 128–187

Citation in format AMSBIB
\Bibitem{Ero14}
\by N.~Yu.~Erokhovets
\paper Buchstaber invariant theory of simplicial complexes and convex polytopes
\inbook Algebraic topology, convex polytopes, and related topics
\bookinfo Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2014
\vol 286
\pages 144--206
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3559}
\crossref{https://doi.org/10.1134/S037196851403008X}
\elib{https://elibrary.ru/item.asp?id=22020637}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 286
\pages 128--187
\crossref{https://doi.org/10.1134/S008154381406008X}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000343605900008}
\elib{https://elibrary.ru/item.asp?id=24022301}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919784558}


Linking options:
  • http://mi.mathnet.ru/eng/tm3559
  • https://doi.org/10.1134/S037196851403008X
  • http://mi.mathnet.ru/eng/tm/v286/p144

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. Yu. Limonchenko, “Semeistva minimalno negolodovskikh kompleksov i poliedralnye proizvedeniya”, Dalnevost. matem. zhurn., 15:2 (2015), 222–237  mathnet  elib
    2. V. M. Buchstaber, A. A. Kustarev, “Embedding theorems for quasi-toric manifolds given by combinatorial data”, Izv. Math., 79:6 (2015), 1157–1183  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    3. Ayzenberg A., “Buchstaber Invariant, Minimal Non-Simplices and Related”, Osaka J. Math., 53:2 (2016), 377–395  mathscinet  zmath  isi  elib
    4. S. Choi, K. Park, “Example of c-rigid polytopes which are not b-rigid”, Math. Slovaca, 69:2 (2019), 437–448  crossref  mathscinet  isi  scopus
    5. Baralic D. Grbic J. Limonchenko I. Vucic A., “Toric Objects Associated With the Dodecahedron”, Filomat, 34:7 (2020), 2329–2356  crossref  isi
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:234
    Full text:68
    References:40

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021