Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Mat. Inst. Steklova, 2014, Volume 286, Pages 88–128 (Mi tm3566)  

This article is cited in 11 scientific papers (total in 11 papers)

Flexible cross-polytopes in spaces of constant curvature

A. A. Gaifullinabc

a Lomonosov Moscow State University, Moscow, Russia
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
c Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia

Abstract: We construct self-intersecting flexible cross-polytopes in the spaces of constant curvature, that is, in Euclidean spaces $\mathbb E^n$, spheres $\mathbb S^n$, and Lobachevsky spaces $\Lambda ^n$ of all dimensions $n$. In dimensions $n\ge5$, these are the first examples of flexible polyhedra. Moreover, we classify all flexible cross-polytopes in each of the spaces $\mathbb E^n$, $\mathbb S^n$, and $\Lambda ^n$. For each type of flexible cross-polytopes, we provide an explicit parametrization of the flexion by either rational or elliptic functions.

Funding Agency Grant Number
Russian Foundation for Basic Research 13-01-12469
13-01-91151
Ministry of Education and Science of the Russian Federation MD-2969.2014.1
Dynasty Foundation
The work was partially supported by the Russian Foundation for Basic Research (project nos. 13-01-12469 and 13-01-91151), by a grant of the President of the Russian Federation (project no. MD-2969.2014.1), and by the Dynasty Foundation.


DOI: https://doi.org/10.1134/S0371968514030066

Full text: PDF file (480 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2014, 286, 77–113

Bibliographic databases:

UDC: 514.114+517.583
Received in January 2014

Citation: A. A. Gaifullin, “Flexible cross-polytopes in spaces of constant curvature”, Algebraic topology, convex polytopes, and related topics, Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 286, MAIK Nauka/Interperiodica, Moscow, 2014, 88–128; Proc. Steklov Inst. Math., 286 (2014), 77–113

Citation in format AMSBIB
\Bibitem{Gai14}
\by A.~A.~Gaifullin
\paper Flexible cross-polytopes in spaces of constant curvature
\inbook Algebraic topology, convex polytopes, and related topics
\bookinfo Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2014
\vol 286
\pages 88--128
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3566}
\crossref{https://doi.org/10.1134/S0371968514030066}
\elib{https://elibrary.ru/item.asp?id=22020635}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 286
\pages 77--113
\crossref{https://doi.org/10.1134/S0081543814060066}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000343605900006}
\elib{https://elibrary.ru/item.asp?id=24022342}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919790560}


Linking options:
  • http://mi.mathnet.ru/eng/tm3566
  • https://doi.org/10.1134/S0371968514030066
  • http://mi.mathnet.ru/eng/tm/v286/p88

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Gaifullin, “Embedded flexible spherical cross-polytopes with nonconstant volumes”, Proc. Steklov Inst. Math., 288 (2015), 56–80  mathnet  crossref  crossref  isi  elib
    2. A. A. Gaifullin, “The analytic continuation of volume and the Bellows conjecture in Lobachevsky spaces”, Sb. Math., 206:11 (2015), 1564–1609  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    3. H. Stachel, “Flexible polyhedral surfaces with two flat poses”, Symmetry-Basel, 7:2 (2015), 774–787  crossref  mathscinet  zmath  isi  scopus
    4. I. Izmestiev, “Classification of flexible Kokotsakis polyhedra with quadrangular base”, Int. Math. Res. Notices, 2017, no. 3, 715–808  crossref  mathscinet  isi  scopus
    5. Alexander A. Gaifullin, “The bellows conjecture for small flexible polyhedra in non-Euclidean spaces”, Mosc. Math. J., 17:2 (2017), 269–290  mathnet  crossref  mathscinet
    6. Alexander A. Gaifullin, Leonid S. Ignashchenko, “Dehn invariant and scissors congruence of flexible polyhedra”, Proc. Steklov Inst. Math., 302 (2018), 130–145  mathnet  crossref  crossref  mathscinet  isi  elib
    7. V. M. Buchstaber, A. P. Veselov, “Conway topograph, $\mathrm{PGL}_2(\pmb{\mathbb Z})$-dynamics and two-valued groups”, Russian Math. Surveys, 74:3 (2019), 387–430  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    8. V. Alexandrov, “A sufficient condition for a polyhedron to be rigid”, J. Geom., 110:2 (2019), UNSP 38  crossref  isi
    9. I. Izmestiev, “Statics and kinematics of frameworks in euclidean and non-euclidean geometry”, Eighteen Essays in Non-Euclidean Geometry, Irma Lectures in Mathematics and Theoretical Physics, 29, eds. V. Alberge, A. Papadopoulos, European Mathematical Soc, 2019, 191–233  isi
    10. Izmestiev I., “Four-Bar Linkages, Elliptic Functions, and Flexible Polyhedra”, Comput. Aided Geom. Des., 79 (2020), UNSP 101870  crossref  mathscinet  isi
    11. Alexandrov V., “The Spectrum of the Laplacian in a Domain Bounded By a Flexible Polyhedron in R-D Does Not Always Remain Unaltered During the Flex”, J. Geom., 111:2 (2020), 32  crossref  mathscinet  isi
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:326
    Full text:76
    References:66

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021