Trudy Matematicheskogo Instituta imeni V.A. Steklova
General information
Latest issue
Forthcoming papers
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Trudy Mat. Inst. Steklova:

Personal entry:
Save password
Forgotten password?

Trudy Mat. Inst. Steklova, 2015, Volume 289, Pages 235–241 (Mi tm3626)  

This article is cited in 11 scientific papers (total in 11 papers)

Finite subgroups of diffeomorphism groups

V. L. Popov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Abstract: We prove the following: (1) the existence, for every integer $n\geq 4$, of a noncompact smooth $n$-dimensional topological manifold whose diffeomorphism group contains an isomorphic copy of every finitely presented group; (2) a finiteness theorem for finite simple subgroups of diffeomorphism groups of compact smooth topological manifolds.

Funding Agency Grant Number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.


Full text: PDF file (175 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2015, 289, 221–226

Bibliographic databases:

UDC: 512
Received: January 15, 2015

Citation: V. L. Popov, “Finite subgroups of diffeomorphism groups”, Selected issues of mathematics and mechanics, Collected papers. In commemoration of the 150th anniversary of Academician Vladimir Andreevich Steklov, Trudy Mat. Inst. Steklova, 289, MAIK Nauka/Interperiodica, Moscow, 2015, 235–241; Proc. Steklov Inst. Math., 289 (2015), 221–226

Citation in format AMSBIB
\by V.~L.~Popov
\paper Finite subgroups of diffeomorphism groups
\inbook Selected issues of mathematics and mechanics
\bookinfo Collected papers. In commemoration of the 150th anniversary of Academician Vladimir Andreevich Steklov
\serial Trudy Mat. Inst. Steklova
\yr 2015
\vol 289
\pages 235--241
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\jour Proc. Steklov Inst. Math.
\yr 2015
\vol 289
\pages 221--226

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Related presentations:

    This publication is cited in the following articles:
    1. Vik. S. Kulikov, E. I. Shustin, “On $G$-Rigid Surfaces”, Proc. Steklov Inst. Math., 298 (2017), 133–151  mathnet  crossref  crossref  mathscinet  isi  elib
    2. Yuri Prokhorov, Constantin Shramov, “Jordan constant for Cremona group of rank $3$”, Mosc. Math. J., 17:3 (2017), 457–509  mathnet  crossref  mathscinet
    3. E. A. Yasinsky, “The Jordan constant for Cremona group of rank 2”, Bull. Korean. Math. Soc., 54:5 (2017), 1859–1871  crossref  mathscinet  isi  scopus
    4. I. Mundet I Riera, “Non Jordan groups of diffeomorphisms and actions of compact Lie groups on manifolds”, Transform. Groups, 22:2 (2017), 487–501  crossref  mathscinet  zmath  isi  scopus
    5. E. A. Yasinsky, “$p$-Subgroups in automorphism groups of real del Pezzo surfaces”, Dokl. Math., 97:2 (2018), 129–130  mathnet  crossref  crossref  zmath  isi  elib  scopus
    6. Yu. Prokhorov, C. Shramov, “Finite groups of birational selfmaps of threefolds”, Math. Res. Lett., 25:3 (2018), 957–972  crossref  isi
    7. Yu. G. Prokhorov, “The rationality problem for conic bundles”, Russian Math. Surveys, 73:3 (2018), 375–456  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    8. V. L. Popov, “Compressible finite groups of birational automorphisms”, Dokl. Math., 98:2 (2018), 413–415  mathnet  crossref  zmath  isi  scopus
    9. Mundet i Riera I., “Finite group actions on homology spheres and manifolds with nonzero Euler characteristic”, J. Topol., 12:3 (2019), 744–758  crossref  mathscinet  isi
    10. Yu. G. Prokhorov, K. A. Shramov, “Finite groups of bimeromorphic selfmaps of uniruled Kähler threefolds”, Izv. Math., 84:5 (2020), 978–1001  mathnet  crossref  crossref  mathscinet  isi  elib
    11. Yu. Prokhorov, C. Shramov, “Automorphism groups of inoue and kodaira surfaces”, Asian J. Math., 24:2 (2020), 355–368  crossref  mathscinet  isi
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:269
    Full text:29

    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021