RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2015, Volume 289, Pages 107–114 (Mi tm3630)  

This article is cited in 6 scientific papers (total in 6 papers)

Embedding of a weighted Sobolev space and properties of the domain

O. V. Besov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Abstract: We establish the embedding $W_{p,v}^s(G)\subset L_{q,w}(G)$ for a weighted Sobolev space defined on an irregular domain $G$ in the case of the limiting exponent when the parameters satisfy certain relations that depend on the geometric properties of the domain $G$.

Funding Agency Grant Number
Russian Science Foundation 14-11-00443


DOI: https://doi.org/10.1134/S0371968515020065

Full text: PDF file (189 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2015, 289, 96–103

Bibliographic databases:

UDC: 517.982.256
Received: February 15, 2015

Citation: O. V. Besov, “Embedding of a weighted Sobolev space and properties of the domain”, Selected issues of mathematics and mechanics, Collected papers. In commemoration of the 150th anniversary of Academician Vladimir Andreevich Steklov, Tr. Mat. Inst. Steklova, 289, MAIK Nauka/Interperiodica, Moscow, 2015, 107–114; Proc. Steklov Inst. Math., 289 (2015), 96–103

Citation in format AMSBIB
\Bibitem{Bes15}
\by O.~V.~Besov
\paper Embedding of a weighted Sobolev space and properties of the domain
\inbook Selected issues of mathematics and mechanics
\bookinfo Collected papers. In commemoration of the 150th anniversary of Academician Vladimir Andreevich Steklov
\serial Tr. Mat. Inst. Steklova
\yr 2015
\vol 289
\pages 107--114
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3630}
\crossref{https://doi.org/10.1134/S0371968515020065}
\elib{http://elibrary.ru/item.asp?id=23738464}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2015
\vol 289
\pages 96--103
\crossref{https://doi.org/10.1134/S0081543815040069}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000358577300006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938895219}


Linking options:
  • http://mi.mathnet.ru/eng/tm3630
  • https://doi.org/10.1134/S0371968515020065
  • http://mi.mathnet.ru/eng/tm/v289/p107

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. O. V. Besov, “Spaces of functions of positive smoothness on irregular domains”, Dokl. Math., 93:1 (2016), 13–15  mathnet  crossref  crossref  mathscinet  zmath  elib  elib  scopus
    2. O. V. Besov, “Spaces of functions of positive smoothness on irregular domains”, Proc. Steklov Inst. Math., 293 (2016), 56–66  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    3. Besov O.V., “Embedding of Sobolev spaces with limit exponent revisited”, Dokl. Math., 94:3 (2016), 684–687  mathnet  crossref  mathscinet  zmath  isi  scopus
    4. O. V. Besov, “Another Note on the Embedding of the Sobolev Space for the Limiting Exponent”, Math. Notes, 101:4 (2017), 608–618  mathnet  crossref  crossref  mathscinet  isi  elib
    5. O. V. Besov, “Embeddings for weighted spaces of functions of positive smoothness on irregular domains into Lebesgue spaces”, Dokl. Math., 97:3 (2018), 236–239  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  scopus
    6. O. V. Besov, “Embeddings of Weighted Spaces of Functions of Positive Smoothness on Irregular Domains in Lebesgue Space”, Math. Notes, 104:6 (2018), 799–809  mathnet  crossref  crossref  isi  elib
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:232
    Full text:15
    References:47
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020