Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Mat. Inst. Steklova, 2015, Volume 290, Pages 254–271 (Mi tm3649)  

This article is cited in 12 scientific papers (total in 12 papers)

Capacity of a compact set in a logarithmic potential field

V. I. Buslaev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Abstract: We obtain a formula for determining the capacity of a compact set in the external field created by a spherically normalized logarithmic potential of a measure supported outside the compact set.

Funding Agency Grant Number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.


DOI: https://doi.org/10.1134/S0371968515030218

Full text: PDF file (268 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2015, 290:1, 238–255

Bibliographic databases:

UDC: 517.53
Received: March 15, 2015

Citation: V. I. Buslaev, “Capacity of a compact set in a logarithmic potential field”, Modern problems of mathematics, mechanics, and mathematical physics, Collected papers, Trudy Mat. Inst. Steklova, 290, MAIK Nauka/Interperiodica, Moscow, 2015, 254–271; Proc. Steklov Inst. Math., 290:1 (2015), 238–255

Citation in format AMSBIB
\Bibitem{Bus15}
\by V.~I.~Buslaev
\paper Capacity of a compact set in a logarithmic potential field
\inbook Modern problems of mathematics, mechanics, and mathematical physics
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2015
\vol 290
\pages 254--271
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3649}
\crossref{https://doi.org/10.1134/S0371968515030218}
\elib{https://elibrary.ru/item.asp?id=24045410}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2015
\vol 290
\issue 1
\pages 238--255
\crossref{https://doi.org/10.1134/S0081543815060218}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000363268500021}
\elib{https://elibrary.ru/item.asp?id=24962574}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944691195}


Linking options:
  • http://mi.mathnet.ru/eng/tm3649
  • https://doi.org/10.1134/S0371968515030218
  • http://mi.mathnet.ru/eng/tm/v290/p254

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. I. Buslaev, “An analogue of Polya's theorem for piecewise holomorphic functions”, Sb. Math., 206:12 (2015), 1707–1721  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    2. V. I. Buslaev, “An analog of Gonchar's theorem for the $m$-point version of Leighton's conjecture”, Proc. Steklov Inst. Math., 293 (2016), 127–139  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    3. E. A. Rakhmanov, “The Gonchar-Stahl $\rho^2$-theorem and associated directions in the theory of rational approximations of analytic functions”, Sb. Math., 207:9 (2016), 1236–1266  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    4. S. P. Suetin, “Zero distribution of Hermite–Padé polynomials and localization of branch points of multivalued analytic functions”, Russian Math. Surveys, 71:5 (2016), 976–978  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. V. I. Buslaev, “The Capacity of the Rational Preimage of a Compact Set”, Math. Notes, 100:6 (2016), 781–790  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    6. S. P. Suetin, “An Analog of Pólya's Theorem for Multivalued Analytic Functions with Finitely Many Branch Points”, Math. Notes, 101:5 (2017), 888–898  mathnet  crossref  crossref  mathscinet  isi  elib
    7. V. I. Buslaev, “On the Van Vleck Theorem for Limit-Periodic Continued Fractions of General Form”, Proc. Steklov Inst. Math., 298 (2017), 68–93  mathnet  crossref  crossref  mathscinet  isi  elib
    8. V. I. Buslaev, “Continued fractions with limit periodic coefficients”, Sb. Math., 209:2 (2018), 187–205  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    9. V. I. Buslaev, “On Singular points of Meromorphic Functions Determined by Continued Fractions”, Math. Notes, 103:4 (2018), 527–536  mathnet  crossref  crossref  mathscinet  isi  elib
    10. E. A. Rakhmanov, “Zero distribution for Angelesco Hermite–Padé polynomials”, Russian Math. Surveys, 73:3 (2018), 457–518  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. V. I. Buslaev, “Necessary and sufficient conditions for extending a function to a Schur function”, Sb. Math., 211:12 (2020), 1660–1703  mathnet  crossref  crossref  mathscinet  isi  elib
    12. V. I. Buslaev, “On a lower bound for the rate of convergence of multipoint Padé approximants of piecewise analytic functions”, Izv. Math., 85:3 (2021), 351–366  mathnet  crossref  crossref  isi  elib
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:245
    Full text:25
    References:25
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021