RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2015, Volume 290, Pages 149–153 (Mi tm3653)  

This article is cited in 10 scientific papers (total in 10 papers)

Lorentz invariant vacuum solutions in general relativity

M. O. Katanaev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Abstract: All Lorentz invariant solutions of vacuum Einstein's equations are found. It is proved that these solutions describe space–times of constant curvature.

Funding Agency Grant Number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.


DOI: https://doi.org/10.1134/S0371968515030127

Full text: PDF file (136 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2015, 290:1, 138–142

Bibliographic databases:

Document Type: Article
UDC: 514.822
Received: March 15, 2015

Citation: M. O. Katanaev, “Lorentz invariant vacuum solutions in general relativity”, Modern problems of mathematics, mechanics, and mathematical physics, Collected papers, Tr. Mat. Inst. Steklova, 290, MAIK Nauka/Interperiodica, Moscow, 2015, 149–153; Proc. Steklov Inst. Math., 290:1 (2015), 138–142

Citation in format AMSBIB
\Bibitem{Kat15}
\by M.~O.~Katanaev
\paper Lorentz invariant vacuum solutions in general relativity
\inbook Modern problems of mathematics, mechanics, and mathematical physics
\bookinfo Collected papers
\serial Tr. Mat. Inst. Steklova
\yr 2015
\vol 290
\pages 149--153
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3653}
\crossref{https://doi.org/10.1134/S0371968515030127}
\elib{http://elibrary.ru/item.asp?id=24045399}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2015
\vol 290
\issue 1
\pages 138--142
\crossref{https://doi.org/10.1134/S0081543815060127}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000363268500012}
\elib{http://elibrary.ru/item.asp?id=24962542}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944685753}


Linking options:
  • http://mi.mathnet.ru/eng/tm3653
  • https://doi.org/10.1134/S0371968515030127
  • http://mi.mathnet.ru/eng/tm/v290/p149

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. K. Gushchin, “$L_p$-estimates for the nontangential maximal function of the solution to a second-order elliptic equation”, Sb. Math., 207:10 (2016), 1384–1409  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    2. V. V. Zharinov, “Bäcklund transformations”, Theoret. and Math. Phys., 189:3 (2016), 1681–1692  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    3. M. O. Katanaev, “Normal coordinates in affine geometry”, Lobachevskii Journal of Mathematics, 39:3 (2018), 464–476  mathnet  crossref  mathscinet  isi  elib
    4. M. O. Katanaev, “Chern–Simons term in the geometric theory of defects”, Phys. Rev. D, 96:8 (2017), 084054  crossref  isi  scopus
    5. A. K. Gushchin, “The Luzin area integral and the nontangential maximal function for solutions to a second-order elliptic equation”, Sb. Math., 209:6 (2018), 823–839  mathnet  crossref  crossref  adsnasa  isi  elib
    6. A. K. Gushchin, “A criterion for the existence of $L_p$ boundary values of solutions to an elliptic equation”, Proc. Steklov Inst. Math., 301 (2018), 44–64  mathnet  crossref  crossref  isi  elib  elib
    7. M. O. Katanaev, “Chern–Simons action and disclinations”, Proc. Steklov Inst. Math., 301 (2018), 114–133  mathnet  crossref  crossref  isi  elib  elib
    8. Yu. N. Drozhzhinov, “Asymptotically homogeneous generalized functions and some of their applications”, Proc. Steklov Inst. Math., 301 (2018), 65–81  mathnet  crossref  crossref  isi  elib  elib
    9. A. S. Trushechkin, “Finding stationary solutions of the Lindblad equation by analyzing the entropy production functional”, Proc. Steklov Inst. Math., 301 (2018), 262–271  mathnet  crossref  crossref  isi  elib  elib
    10. M. O. Katanaev, “Description of disclinations and dislocations by the Chern–Simons action for $\mathbb{SO}(3)$ connection”, Phys. Part. Nuclei, 49:5 (2018), 890–893  crossref  isi  scopus
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:145
    Full text:17
    References:15
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019