RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2015, Volume 290, Pages 323–334 (Mi tm3658)  

This article is cited in 1 scientific paper (total in 1 paper)

Integrability of the sum of absolute values of blocks of the Fourier–Walsh series for functions of bounded variation

Yu. V. Malykhina, S. A. Telyakovskiia, N. N. Kholshchevnikovab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b Moscow State Technological University "Stankin", Moscow, Russia

Abstract: We establish necessary and sufficient conditions on a sequence that splits the Fourier–Walsh series into blocks under which the series consisting of the absolute values of such blocks of the Fourier–Walsh series of any function of bounded variation converges to an integrable function. We also obtain estimates for the $L$-norms of the Walsh–Dirichlet kernels and their differences.

Funding Agency Grant Number
Russian Science Foundation 14-50-00005
Russian Foundation for Basic Research 14-01-00417
The work of Yu.V. Malykhin and S.A. Telyakovskii (Sections 1, 2, and 4) is supported by the Russian Science Foundation under grant 14-50-00005 and performed in Steklov Mathematical Institute of Russian Academy of Sciences. The work of N.N. Kholshchevnikova (Section 3) is supported by the Russian Foundation for Basic Research, project no. 14-01-00417.


DOI: https://doi.org/10.1134/S0371968515030279

Full text: PDF file (217 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2015, 290:1, 306–317

Bibliographic databases:

UDC: 517.518.36
Received: March 15, 2015

Citation: Yu. V. Malykhin, S. A. Telyakovskii, N. N. Kholshchevnikova, “Integrability of the sum of absolute values of blocks of the Fourier–Walsh series for functions of bounded variation”, Modern problems of mathematics, mechanics, and mathematical physics, Collected papers, Tr. Mat. Inst. Steklova, 290, MAIK Nauka/Interperiodica, Moscow, 2015, 323–334; Proc. Steklov Inst. Math., 290:1 (2015), 306–317

Citation in format AMSBIB
\Bibitem{MalTelKho15}
\by Yu.~V.~Malykhin, S.~A.~Telyakovskii, N.~N.~Kholshchevnikova
\paper Integrability of the sum of absolute values of blocks of the Fourier--Walsh series for functions of bounded variation
\inbook Modern problems of mathematics, mechanics, and mathematical physics
\bookinfo Collected papers
\serial Tr. Mat. Inst. Steklova
\yr 2015
\vol 290
\pages 323--334
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3658}
\crossref{https://doi.org/10.1134/S0371968515030279}
\elib{http://elibrary.ru/item.asp?id=24045417}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2015
\vol 290
\issue 1
\pages 306--317
\crossref{https://doi.org/10.1134/S0081543815060279}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000363268500027}
\elib{http://elibrary.ru/item.asp?id=24962573}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944691194}


Linking options:
  • http://mi.mathnet.ru/eng/tm3658
  • https://doi.org/10.1134/S0371968515030279
  • http://mi.mathnet.ru/eng/tm/v290/p323

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. R. Toledo, “On the boundedness of the $L^1$-norm of Walsh-Fejér kernels”, J. Math. Anal. Appl., 457:1 (2018), 153–178  crossref  mathscinet  zmath  isi  scopus
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:234
    Full text:6
    References:44
    First page:7

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019