RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2015, Volume 291, Pages 45–55 (Mi tm3668)  

This article is cited in 3 scientific papers (total in 3 papers)

On the boundedness of optimal controls in infinite-horizon problems

S. M. Aseevabc

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b International Institute for Applied Systems Analysis, Laxenburg, Austria
c Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg

Abstract: A class of infinite-horizon optimal control problems that arise in economic applications is considered. A theorem on the nonemptiness and boundedness of the set of optimal controls is proved by the method of finite-horizon approximations and the apparatus of the Pontryagin maximum principle. As an example, a simple model of optimal economic growth with a renewable resource is considered.

Funding Agency Grant Number
Russian Science Foundation 15-11-10018
This work is supported by the Russian Science Foundation under grant 15-11-10018.


DOI: https://doi.org/10.1134/S0371968515040044

Full text: PDF file (211 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2015, 291, 38–48

Bibliographic databases:

Document Type: Article
UDC: 517.977
Received: September 15, 2015

Citation: S. M. Aseev, “On the boundedness of optimal controls in infinite-horizon problems”, Optimal control, Collected papers. In commemoration of the 105th anniversary of Academician Lev Semenovich Pontryagin, Tr. Mat. Inst. Steklova, 291, MAIK Nauka/Interperiodica, Moscow, 2015, 45–55; Proc. Steklov Inst. Math., 291 (2015), 38–48

Citation in format AMSBIB
\Bibitem{Ase15}
\by S.~M.~Aseev
\paper On the boundedness of optimal controls in infinite-horizon problems
\inbook Optimal control
\bookinfo Collected papers. In commemoration of the 105th anniversary of Academician Lev Semenovich Pontryagin
\serial Tr. Mat. Inst. Steklova
\yr 2015
\vol 291
\pages 45--55
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3668}
\crossref{https://doi.org/10.1134/S0371968515040044}
\elib{http://elibrary.ru/item.asp?id=24776661}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2015
\vol 291
\pages 38--48
\crossref{https://doi.org/10.1134/S0081543815080040}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000369344400004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84957553442}


Linking options:
  • http://mi.mathnet.ru/eng/tm3668
  • https://doi.org/10.1134/S0371968515040044
  • http://mi.mathnet.ru/eng/tm/v291/p45

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. G. Chentsov, A. P. Baklanov, I. I. Savenkov, “Zadacha o dostizhimosti s ogranicheniyami asimptoticheskogo kharaktera”, Izv. IMI UdGU, 2016, no. 1(47), 54–118  mathnet  mathscinet  zmath  elib
    2. S. M. Aseev, “Existence of an optimal control in infinite-horizon problems with unbounded set of control constraints”, Proc. Steklov Inst. Math. (Suppl.), 297, suppl. 1 (2017), 1–10  mathnet  crossref  crossref  mathscinet  isi  elib
    3. S. Aseev, T. Manzoor, “Optimal exploitation of renewable resources: lessons in sustainability from an optimal growth model of natural resource consumption”, Control Systems and Mathematical Methods in Economics: Essays in Honor of Vladimir M. Veliov, Lecture Notes in Economics and Mathematical Systems, 687, eds. G. Feichtinger, R. Kovacevic, G. Tragler, Springer-Verlag Berlin, 2018, 221–245  crossref  mathscinet  zmath  isi
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:164
    Full text:6
    References:41
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019