RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2016, Volume 293, Pages 133–145 (Mi tm3709)  

This article is cited in 6 scientific papers (total in 6 papers)

An analog of Gonchar's theorem for the $m$-point version of Leighton's conjecture

V. I. Buslaev

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia

Abstract: Gonchar's theorem on the validity of Leighton's conjecture for arbitrary nondecreasing sequences of exponents of general $C$-fractions is extended to continued fractions of a more general form.

Funding Agency Grant Number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.


DOI: https://doi.org/10.1134/S0371968516020096

Full text: PDF file (213 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2016, 293, 127–139

Bibliographic databases:

UDC: 517.53
Received: October 30, 2015

Citation: V. I. Buslaev, “An analog of Gonchar's theorem for the $m$-point version of Leighton's conjecture”, Function spaces, approximation theory, and related problems of mathematical analysis, Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii, Tr. Mat. Inst. Steklova, 293, MAIK Nauka/Interperiodica, Moscow, 2016, 133–145; Proc. Steklov Inst. Math., 293 (2016), 127–139

Citation in format AMSBIB
\Bibitem{Bus16}
\by V.~I.~Buslaev
\paper An analog of Gonchar's theorem for the $m$-point version of Leighton's conjecture
\inbook Function spaces, approximation theory, and related problems of mathematical analysis
\bookinfo Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii
\serial Tr. Mat. Inst. Steklova
\yr 2016
\vol 293
\pages 133--145
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3709}
\crossref{https://doi.org/10.1134/S0371968516020096}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3628475}
\elib{http://elibrary.ru/item.asp?id=26344474}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 293
\pages 127--139
\crossref{https://doi.org/10.1134/S008154381604009X}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000380722200009}
\elib{http://elibrary.ru/item.asp?id=27120137}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84980005545}


Linking options:
  • http://mi.mathnet.ru/eng/tm3709
  • https://doi.org/10.1134/S0371968516020096
  • http://mi.mathnet.ru/eng/tm/v293/p133

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. I. Buslaev, “The Capacity of the Rational Preimage of a Compact Set”, Math. Notes, 100:6 (2016), 781–790  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    2. S. P. Suetin, “An Analog of Pólya's Theorem for Multivalued Analytic Functions with Finitely Many Branch Points”, Math. Notes, 101:5 (2017), 888–898  mathnet  crossref  crossref  mathscinet  isi  elib
    3. V. I. Buslaev, “On the Van Vleck Theorem for Limit-Periodic Continued Fractions of General Form”, Proc. Steklov Inst. Math., 298 (2017), 68–93  mathnet  crossref  crossref  mathscinet  isi  elib
    4. V. I. Buslaev, “Continued fractions with limit periodic coefficients”, Sb. Math., 209:2 (2018), 187–205  mathnet  crossref  crossref  adsnasa  isi  elib
    5. V. I. Buslaev, “On Singular points of Meromorphic Functions Determined by Continued Fractions”, Math. Notes, 103:4 (2018), 527–536  mathnet  crossref  crossref  isi  elib
    6. S. P. Suetin, “On a new approach to the problem of distribution of zeros of Hermite–Padé polynomials for a Nikishin system”, Proc. Steklov Inst. Math., 301 (2018), 245–261  mathnet  crossref  crossref  isi  elib  elib
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:147
    Full text:7
    References:25
    First page:5

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019