RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Правила для авторов
Лицензионный договор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Труды МИАН:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Тр. МИАН, 2016, том 293, страницы 193–200 (Mi tm3713)  

Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)

О некоторых свойствах конечных сумм ридж-функций, определенных на выпуклых подмножествах $\mathbb R^n$

С. В. Конягин, А. А. Кулешов

Математический институт им. В.А. Стеклова Российской академии наук, Москва, Россия

Аннотация: Устанавливаются необходимые условия непрерывности конечных сумм ридж-функций, определенных на выпуклых подмножествах $E$ пространства $\mathbb R^n$. Показано, что при некоторых ограничениях на функции $\varphi _i$, образующие рассматриваемую сумму, в случае, когда $E$ открыто, непрерывность суммы влечет за собой непрерывность всех $\varphi _i$. В случае, когда $E$ – выпуклое тело с негладкой границей, получена логарифмическая оценка роста функций $\varphi _i$ в окрестностях граничных точек своих областей определения. Также построен пример, показывающий точность найденной оценки.

Финансовая поддержка Номер гранта
Российский научный фонд 14-50-00005
Исследование выполнено за счет гранта Российского научного фонда (проект № 14-50-00005).


DOI: https://doi.org/10.1134/S0371968516020138

Полный текст: PDF файл (199 kB)
Первая страница: PDF файл
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Proceedings of the Steklov Institute of Mathematics, 2016, 293, 186–193

Реферативные базы данных:

Тип публикации: Статья
УДК: 517.518.2
Поступило в редакцию: 18 сентября 2015 г.

Образец цитирования: С. В. Конягин, А. А. Кулешов, “О некоторых свойствах конечных сумм ридж-функций, определенных на выпуклых подмножествах $\mathbb R^n$”, Функциональные пространства, теория приближений, смежные разделы математического анализа, Сборник статей. К 110-летию со дня рождения академика Сергея Михайловича Никольского, Тр. МИАН, 293, МАИК «Наука/Интерпериодика», М., 2016, 193–200; Proc. Steklov Inst. Math., 293 (2016), 186–193

Цитирование в формате AMSBIB
\RBibitem{KonKul16}
\by С.~В.~Конягин, А.~А.~Кулешов
\paper О некоторых свойствах конечных сумм ридж-функций, определенных на выпуклых подмножествах~$\mathbb R^n$
\inbook Функциональные пространства, теория приближений, смежные разделы математического анализа
\bookinfo Сборник статей. К~110-летию со дня рождения академика Сергея Михайловича Никольского
\serial Тр. МИАН
\yr 2016
\vol 293
\pages 193--200
\publ МАИК «Наука/Интерпериодика»
\publaddr М.
\mathnet{http://mi.mathnet.ru/tm3713}
\crossref{https://doi.org/10.1134/S0371968516020138}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3628479}
\elib{http://elibrary.ru/item.asp?id=26344478}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 293
\pages 186--193
\crossref{https://doi.org/10.1134/S0081543816040131}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000380722200013}
\elib{http://elibrary.ru/item.asp?id=27119501}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84979966342}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/tm3713
  • https://doi.org/10.1134/S0371968516020138
  • http://mi.mathnet.ru/rus/tm/v293/p193

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. А. А. Кулешов, “О некоторых свойствах гладких сумм ридж-функций”, Современные проблемы математики, механики и математической физики. II, Сборник статей, Тр. МИАН, 294, МАИК «Наука/Интерпериодика», М., 2016, 99–104  mathnet  crossref  mathscinet  elib; A. A. Kuleshov, “On some properties of smooth sums of ridge functions”, Proc. Steklov Inst. Math., 294 (2016), 89–94  crossref  isi  elib
    2. А. А. Кулешов, “Непрерывные суммы ридж-функций на выпуклом теле и класс VMO”, Матем. заметки, 102:6 (2017), 866–873  mathnet  crossref  mathscinet  elib; A. A. Kuleshov, “Continuous Sums of Ridge Functions on a Convex Body and the Class VMO”, Math. Notes, 102:6 (2017), 799–805  crossref  isi
    3. V. E. Ismailov, “A note on the equioscillation theorem for best ridge function approximation”, Expo. Math., 35:3 (2017), 343–349  crossref  mathscinet  zmath  isi  scopus
    4. С. В. Конягин, А. А. Кулешов, В. Е. Майоров, “Некоторые проблемы теории ридж-функций”, Комплексный анализ, математическая физика и приложения, Сборник статей, Тр. МИАН, 301, МАИК «Наука/Интерпериодика», М., 2018, 155–181  mathnet  crossref  elib; S. V. Konyagin, A. A. Kuleshov, V. E. Maiorov, “Some problems in the theory of ridge functions”, Proc. Steklov Inst. Math., 301 (2018), 144–169  crossref  isi  elib
    5. Aliev R.A., Asgarova A.A., Ismailov V.E., “A Note on Continuous Sums of Ridge Functions”, J. Approx. Theory, 237 (2019), 210–221  crossref  mathscinet  zmath  isi
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Просмотров:
    Эта страница:182
    Литература:23
    Первая стр.:4

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019