RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2016, Volume 293, Pages 263–279 (Mi tm3718)  

This article is cited in 1 scientific paper (total in 1 paper)

Boundedness and compactness of a class of convolution integral operators of fractional integration type

R. Oinarov

L. N. Gumilev Eurasian National University, Satpayev Str. 2, Astana, 010008 Kazakhstan

Abstract: For a class of convolution integral operators whose kernels may have integrable singularities, boundedness and compactness criteria in weighted Lebesgue spaces are obtained.

Funding Agency Grant Number
Ministry of Education and Science of the Republic of Kazakhstan 5499/GF4
This work was supported by the Ministry of Education and Science of the Republic of Kazakhstan, project no. 5499/GF4 in the priority field “Intellectual Potential of the Country.”


DOI: https://doi.org/10.1134/S0371968516020187

Full text: PDF file (225 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2016, 293, 255–271

Bibliographic databases:

UDC: 517.51
Received: October 6, 2015

Citation: R. Oinarov, “Boundedness and compactness of a class of convolution integral operators of fractional integration type”, Function spaces, approximation theory, and related problems of mathematical analysis, Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii, Tr. Mat. Inst. Steklova, 293, MAIK Nauka/Interperiodica, Moscow, 2016, 263–279; Proc. Steklov Inst. Math., 293 (2016), 255–271

Citation in format AMSBIB
\Bibitem{Oin16}
\by R.~Oinarov
\paper Boundedness and compactness of a~class of convolution integral operators of fractional integration type
\inbook Function spaces, approximation theory, and related problems of mathematical analysis
\bookinfo Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii
\serial Tr. Mat. Inst. Steklova
\yr 2016
\vol 293
\pages 263--279
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3718}
\crossref{https://doi.org/10.1134/S0371968516020187}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3628484}
\elib{http://elibrary.ru/item.asp?id=26344483}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 293
\pages 255--271
\crossref{https://doi.org/10.1134/S0081543816040180}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000380722200018}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84979993335}


Linking options:
  • http://mi.mathnet.ru/eng/tm3718
  • https://doi.org/10.1134/S0371968516020187
  • http://mi.mathnet.ru/eng/tm/v293/p263

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. L. P. Castro, L. T. Minh, N. M. Tuan, “New convolutions for quadratic-phase Fourier integral operators and their applications”, Mediterr. J. Math., 15:1 (2018), 13, 17 pp.  crossref  mathscinet  isi  scopus
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:126
    Full text:7
    References:31
    First page:9

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019