RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy MIAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mat. Inst. Steklova, 2016, Volume 293, Pages 280–295 (Mi tm3719)  

This article is cited in 10 scientific papers (total in 10 papers)

On a class of weighted inequalities containing quasilinear operators

D. V. Prokhorov

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia

Abstract: A characterization of weighted $L^p$$L^r$ inequalities on a half-axis is obtained for positive quasilinear operators with Oinarov kernels.

Funding Agency Grant Number
Russian Science Foundation 14-11-00443
This work is supported by the Russian Science Foundation under grant 14-11-00443.


DOI: https://doi.org/10.1134/S0371968516020199

Full text: PDF file (236 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics, 2016, 293, 272–287

Bibliographic databases:

UDC: 517.51
Received: September 17, 2015

Citation: D. V. Prokhorov, “On a class of weighted inequalities containing quasilinear operators”, Function spaces, approximation theory, and related problems of mathematical analysis, Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii, Tr. Mat. Inst. Steklova, 293, MAIK Nauka/Interperiodica, Moscow, 2016, 280–295; Proc. Steklov Inst. Math., 293 (2016), 272–287

Citation in format AMSBIB
\Bibitem{Pro16}
\by D.~V.~Prokhorov
\paper On a~class of weighted inequalities containing quasilinear operators
\inbook Function spaces, approximation theory, and related problems of mathematical analysis
\bookinfo Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii
\serial Tr. Mat. Inst. Steklova
\yr 2016
\vol 293
\pages 280--295
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3719}
\crossref{https://doi.org/10.1134/S0371968516020199}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3628485}
\elib{http://elibrary.ru/item.asp?id=26344484}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 293
\pages 272--287
\crossref{https://doi.org/10.1134/S0081543816040192}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000380722200019}
\elib{http://elibrary.ru/item.asp?id=27120023}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84979999742}


Linking options:
  • http://mi.mathnet.ru/eng/tm3719
  • https://doi.org/10.1134/S0371968516020199
  • http://mi.mathnet.ru/eng/tm/v293/p280

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. D. Stepanov, G. E. Shambilova, “Boundedness of quasilinear integral operators on the cone of monotone functions”, Siberian Math. J., 57:5 (2016), 884–904  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    2. Stepanov V.D., Shambilova G.E., “Boundedness of a class of quasilinear operators on the cone of monotone functions”, Dokl. Math., 94:3 (2016), 697–702  mathnet  crossref  mathscinet  zmath  isi  elib  scopus
    3. V. D. Stepanov, G. E. Shambilova, “On the boundedness of quasilinear integral operators of iterated type with Oinarov's kernels on the cone of monotone functions”, Eurasian Math. J., 8:2 (2017), 47–73  mathnet  mathscinet
    4. V. D. Stepanov, G. E. Shambilova, “Boundedness of quasilinear integral operators of iterated type with Oinarov's kernel on the cone of monotone functions”, Dokl. Math., 96:1 (2017), 315–320  mathnet  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  scopus
    5. V. D. Stepanov, G. E. Shambilova, “On weighted iterated Hardy-type operators”, Anal. Math., 44:2 (2018), 273–283  crossref  mathscinet  zmath  isi  scopus
    6. V. D. Stepanov, G. È. Shambilova, “Iterated Integral Operators on the Cone of Monotone Functions”, Math. Notes, 104:3 (2018), 443–453  mathnet  crossref  crossref  isi  elib
    7. V. D. Stepanov, G. E. Shambilova, “Reduction of weighted bilinear inequalities with integration operators on the cone of nondecreasing functions”, Siberian Math. J., 59:3 (2018), 505–522  mathnet  crossref  crossref  isi  elib
    8. P. Jain, S. Kanjilal, V. D. Stepanov, E. P. Ushakova, “On bilinear Hardy–Steklov operators”, Dokl. Math., 98:3 (2018), 634–637  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  scopus
    9. A. A. Kalybay, R. Oinarov, “Bounds for a class of quasilinear integral operators on the set of non-negative and non-negative monotone functions”, Izv. Math., 83:2 (2019), 251–272  mathnet  crossref  crossref  adsnasa  isi  elib
    10. A. A. Kalybay, “Weighted estimates for a class of quasilinear integral operators”, Siberian Math. J., 60:2 (2019), 291–303  mathnet  crossref  crossref  isi
  • Труды Математического института им. В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Number of views:
    This page:114
    Full text:12
    References:28
    First page:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020