|
Tr. Mat. Inst. Steklova, 2016, Volume 294, Pages 268–292
(Mi tm3726)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
The Hess–Appelrot system and its nonholonomic analogs
I. A. Bizyaev, A. V. Borisov, I. S. Mamaev Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
Abstract:
This paper is concerned with the nonholonomic Suslov problem and its generalization proposed by Chaplygin. The issue of the existence of an invariant measure with singular density (having singularities at some points of the phase space) is discussed.
Funding Agency |
Grant Number |
Russian Science Foundation  |
14-50-00005 |
This work is supported by the Russian Science Foundation under grant 14-50-00005. |
DOI:
https://doi.org/10.1134/S0371968516030171
Full text:
PDF file (993 kB)
First page: PDF file
References:
PDF file
HTML file
English version:
Proceedings of the Steklov Institute of Mathematics, 2016, 294, 252–275
Bibliographic databases:
Document Type:
Article
UDC:
517.925+531.381 Received: April 25, 2016
Citation:
I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “The Hess–Appelrot system and its nonholonomic analogs”, Modern problems of mathematics, mechanics, and mathematical physics. II, Collected papers, Tr. Mat. Inst. Steklova, 294, MAIK Nauka/Interperiodica, Moscow, 2016, 268–292; Proc. Steklov Inst. Math., 294 (2016), 252–275
Citation in format AMSBIB
\Bibitem{BizBorMam16}
\by I.~A.~Bizyaev, A.~V.~Borisov, I.~S.~Mamaev
\paper The Hess--Appelrot system and its nonholonomic analogs
\inbook Modern problems of mathematics, mechanics, and mathematical physics.~II
\bookinfo Collected papers
\serial Tr. Mat. Inst. Steklova
\yr 2016
\vol 294
\pages 268--292
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3726}
\crossref{https://doi.org/10.1134/S0371968516030171}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3628506}
\elib{http://elibrary.ru/item.asp?id=26601064}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 294
\pages 252--275
\crossref{https://doi.org/10.1134/S0081543816060171}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000386554900017}
\elib{http://elibrary.ru/item.asp?id=27581499}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84992061322}
Linking options:
http://mi.mathnet.ru/eng/tm3726https://doi.org/10.1134/S0371968516030171 http://mi.mathnet.ru/eng/tm/v294/p268
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “The Hess–Appelrot Case and Quantization of the Rotation Number”, Regul. Chaotic Dyn., 22:2 (2017), 180–196
-
A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics”, Russian Math. Surveys, 72:5 (2017), 783–840
-
Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “The Chaplygin Sleigh with Parametric Excitation: Chaotic Dynamics and Nonholonomic Acceleration”, Regul. Chaotic Dyn., 22:8 (2017), 955–975
|
Number of views: |
This page: | 124 | References: | 21 | First page: | 5 |
|